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Preface

Cryptography enables many paradoxical objects, such as public key
encryption, verifiable electronic signatures, zero-knowledge pro-
tocols, and fully homomorphic encryption. The two main steps in
developing such seemingly impossible primitives are (i) defining the
desired security properties formally and (ii) obtaining a construction
satisfying the security property provably. In modern cryptography,
the second step typically assumes (unproven) computational assump-
tions, which are conjectured to be computationally intractable. In this
course, we will define several cryptographic primitives and argue
their security based on well-studied computational hardness assump-
tions. However, we will largely ignore the mathematics underlying
the assumed computational intractability assumptions.
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1
Mathematical Background

In modern cryptography, (1) we typically assume that our attackers
cannot run in unreasonably large amounts of time, and (2) we allow
security to be broken with a very small, but non-zero, probability.

Without these assumptions, we must work in the realm of information-
theoretic cryptography, which is often unachievable or impracti-
cal for many applications. For example, the one-time pad 1 – an 1 For a message m ∈ {0, 1}n and a

random key k ∈ {0, 1}n, the encryption
of m is c = m ⊕ k. The decryption is
m = c⊕ k.

information-theoretically secure cipher – is not very useful because it
requires very large keys.

In this chapter, we define items (1) and (2) more formally. We
require our adversaries to run in polynomial time, which captures
the idea that their runtime is not unreasonably large (sections 1.1).
We also allow security to be broken with negligible – very small –
probability (section 1.2).

1.1 Probabilistic Polynomial Time

A probabilistic Turing Machine is a generic computer that is allowed
to make random choices during its execution. A probabilistic polyno-
mial time Turing Machine is one which halts in time polynomial in its
input length. More formally:

Definition 1.1 (Probabilistic Polynomial Time). A probabilistic Tur-
ing Machine M is said to be PPT (a Probabilistic Polynomial Time Turing
Machine) if ∃c ∈ Z+ such that ∀x ∈ {0, 1}∗, M(x) halts in |x|c steps.

A non-uniform PPT Turing Machine is a collection of machines one
for each input length, as opposed to a single machine that must work
for all input lengths.

Definition 1.2 (Non-uniform PPT). A non-uniform PPT machine is a se-
quence of Turing Machines {M1, M2, · · · } such that ∃c ∈ Z+ such that
∀x ∈ {0, 1}∗, M|x|(x) halts in |x|c steps.



8 a course in theory of cryptography

1.2 Noticeable and Negligible Functions

Noticeable and negligible functions are used to characterize the
“largeness” or “smallness” of a function describing the probability of
some event. Intuitively, a noticeable function is required to be larger
than some inverse-polynomially function in the input parameter.
On the other hand, a negligible function must be smaller than any
inverse-polynomial function of the input parameter. More formally:

Definition 1.3 (Noticeable Function). A function µ(·) : Z+ → [0, 1] is
noticeable iff ∃c ∈ Z+, n0 ∈ Z+ such that ∀n ≥ n0, µ(n) > n−c.

Example. Observe that µ(n) = n−3 is a noticeable function. (Notice
that the above definition is satisfied for c = 4 and n0 = 1.)

Definition 1.4 (Negligible Function). A function µ(·) : Z+ → [0, 1] is
negligible iff ∀c ∈ Z+ ∃n0 ∈ Z+ such that ∀n ≥ n0, µ(n) < n−c.

Example. µ(n) = 2−n is an example of a negligible function. This can
be observed as follows. Consider an arbitrary c ∈ Z+ and set n0 = c2.
Now, observe that for all n ≥ n0, we have that n

log2 n ≥
n0

log2 n0
> n0√

n0
=

√
n0 = c. This allows us to conclude that

µ(n) = 2−n = n−
n

log2 n < n−c.

Thus, we have proved that for any c ∈ Z+, there exists n0 ∈ Z+

such that for any n ≥ n0, µ(n) < n−c.

Gap between Noticeable and Negligible Functions. At first thought it
might seem that a function that is not negligible (or, a non-negligible
function) must be a noticeable. This is not true!2 Negating the defini- 2 Mihir Bellare. A note on negligi-

ble functions. Journal of Cryptology,
15(4):271–284, September 2002

tion of a negligible function, we obtain that a non-negligible function
µ(·) is such that ∃c ∈ Z+ such that ∀n0 ∈ Z+, ∃n ≥ n0 such
that µ(n) > n−c. Note that this requirement is satisfied as long as
µ(n) > n−c for infinitely many choices of n ∈ Z+. However, a notice-
able function requires this condition to be true for every n ≥ n0.

Below we give example of a function µ(·) that is neither negligible
nor noticeable.

µ(n) =
{ 2−n : x mod 2 = 0

n−3 : x mod 2 ̸= 0

This function is obtained by interleaving negligible and noticeable
functions. It cannot be negligible (resp., noticeable) because it is
greater (resp., less) than an inverse-polynomially function for in-
finitely many input choices.
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Properties of Negligible Functions. Sum and product of two negligible
functions is still a negligible function. We argue this for the sum
function below and defer the problem for products to Exercise 2.2.
These properties together imply that any polynomial function of a
negligible function is still negligible.

Exercise 1.1. If µ(n) and ν(n) are negligible functions from domain Z+ to
range [0, 1] then prove that the following functions are also negligible:

1. ψ1(n) = 1
2 · (µ(n) + ν(n))

2. ψ2(n) = min{µ(n) + ν(n), 1}

3. ψ3(n) = µ(n) · ν(n)

4. ψ4(n) = poly(µ(n)), where poly(·) is an unspecified polynomial func-
tion. (Assume that the output is also clamped to [0, 1] to satisfy the
definition)

function.

Proof.

1. We need to show that for any c ∈ Z+, we can find n0 such that
∀n ≥ n0, ψ1(n) ≤ n−c. Our argument proceeds as follows. Given
the fact that µ and ν are negligible we can conclude that there exist
n1 and n2 such that ∀n ≥ n1, µ(n) < n−c and ∀n ≥ n2, g(n) < n−c.
Combining the above two facts and setting n0 = max(n1, n2) we
have that for every n ≥ n0,

ψ1(n) =
1
2
· (µ(n) + ν(n)) <

1
2
· (n−c + n−c) = n−c

Thus, ψ1(n) ≤ n−c and hence is negligible.

2. We need to show that for any c ∈ Z+, we can find n0 such that
∀n ≥ n0, ψ2(n) ≤ n−c. Given the fact that µ and ν are negligible,
there exist n1 and n2 such that ∀n ≥ n1, µ(n) ≤ n−c−1 and ∀n ≥
n2, g(n) ≤ n−c−1. Setting n0 = max(n1, n2, 3) we have that for
every n ≥ n0,

ψ2(n) = min{µ(n) + ν(n), 1} < n−c−1 + n−c−1 < n−c

1.3 Computationally Hard Problems

We will next provide certain number theoretical problems that are
conjectured to be computationally intractable. We will use the conjec-
tured hardness of these problems in subsequent chapters to o provide
concrete instantiations.
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1.3.1 The Discrete-Log Family of Problem

Consider a group G of prime order. For example, consider the group
Z∗p where p is a large prime. Let g be a generator of this group G.
In this group, given gx for a random x ∈ {1, . . . p− 1} consider the
problem of finding x. This problem, referred to as the discrete-log
problem, is believed to be computationally hard.

The asymptotic definition of the discrete-log problem needs to
consider an infinite family of groups or what we will a group ensem-
ble.

Group Ensemble. A group ensemble is a set of finite cyclic groups
G = {Gn}n∈N. For the group Gn, we assume that given two group
elements in Gn, their sum can be computed in polynomial in n time.
Additionally, we assume that given n the generator g of Gn can be
computed in polynomial time.

Definition 1.5 (Discrete-Log Assumption). We say that the discrete-
log assumption holds for the group ensemble G = {Gn}n∈N, if for every
non-uniform PPT algorithm A we have that

µA(n) := Pr
x←|Gn |

[A(g, gx) = x]

is a negligible function.

The Diffie-Hellman Problems. In addition to the discrete-log assump-
tion, we also define the Computational Diffie-Hellman Assumption
and the Decisional Diffie-Hellman Assumption.

Definition 1.6 (Computational Diffie-Hellman (CDH) Assumption).
We say that the Computational Diffie-Hellman Assumption holds for the
group ensemble G = {Gn}n∈N, if for every non-uniform PPT algorithm A
we have that

µA(n) := Pr
x,y←|Gn |

[A(g, gx, gy) = gxy]

is a negligible function.

Definition 1.7 (Decisional Diffie-Hellman (DDH) Assumption). We
say that the Computational Diffie-Hellman Assumption holds for the group
ensemble G = {Gn}n∈N, if for every non-uniform PPT algorithm A we
have that

µA(n) =| Pr
x,y←|Gn |

[A(g, gx, gy, gxy) = 1]− Pr
x,y,z←|Gn |

[A(g, gx, gy, gz) = 1] |

is a negligible function.
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It is not hard to observe that the discrete-log assumption is the
weakest of the three assumptions above. In fact, it is not difficult
to show that the Discrete-Log Assumption for G implies the CDH
and the DDH Assumptions for G. Additionally, we leave it as an
exercise to show that the CDH Assumption for G implies the DDH
Assumptions for G.

Examples of Groups where these assumptions hold. Now we provide
some examples of group where these assumptions hold.

1. Consider the group Z∗p for a prime p.3 For this group the CDH 3 Since the number of primes is infinite
we can define an infinite family of such
groups. For the sake of simplicity, here
we only consider a single group.

Assumption is conjectured to be true. However, using the Legen-
dre symbol,4 the DDH Assumption in this group can be shown to

4 Let p be an odd prime number. An
integer a is said to be a quadratic residue
modulo p if it is congruent to a perfect
square modulo p and is said to be a
quadratic non-residue modulo p other-
wise. The Legendre symbol is a function
of a and p defined as

(
a
p

)
=


1 if a is quadration residue mod p and a ̸≡ 0 mod p
−1 if a is quadration non-residue mod p
0 if a ≡ 0 mod p

Legendre symbol can be efficiently

computed as
(

a
p

)
= a

p−1
2 mod p.

be false. Can you show how?5

5 This is because given gx , gy one can
easily compute deduce the Legendre

symbol of gxy. Observe that if
(

g
p

)
=

−1 then we have that
(

gxy

p

)
= 1 if and

only if
(

gx

p

)
= 1 or

(
gy

p

)
= 1. Using

this fact, we can construct an adversary
that breaks the DDH problem with
a non-negligible (in fact, noticeable)
probability.

2. Let p = 2q + 1 where both p and q are prime.6 Next, let Q be the

6 By Dirichet’s Theorem on primes in
arithmetic progression, we have that
there are infinite choices of primes
(p, q) for which p = 2q + 1. This allows
us to generalize this group to a group
ensemble.

order-q subgroup of quadratic residues in Z∗p. For this group, the
DDH assumption is believed to hold.

3. Let N = pq where p, q, p−1
2 and q−1

2 are primes. Let QRN be the
cyclic subgroup of qudratic resides of order ϕ(N) = (p− 1)(q− 1).
For this group QRN , the DDH assumption is also believed to hold.

Is DDH strictly stronger than Discrete-Log? In the example cases
above, where DDH is known believed to be hard, the best known
algorithms for DDH are no better than the best known algorithms for
the discrete-log problem. Whether the DDH assumption is strictly
stronger than the discrete-log assumption is an open problem.

1.3.2 CDH in QRN implies Factoring

In this section, we will show that the CDH assumption in QRN im-
plies the factoring assumption.

Lemma 1.1. Given an algorithm A that breaks the CDH assumption in
QRN , we construct an non-uniform PPT adversary B that on input N
outputs its prime factors p and q.

Proof. Given that A is an algorithm that solves the CDH problem in
QRN with a non-negligible probability, we construct an algorithm B
that can factor N. Specifically, B on input N proceeds as follows:

1. Sample v ← QRN (such a v can be obtained by sampling a ran-
dom value in Z∗N and squaring it) and compute g := v2 mod N.

2. Sample x, y← [N].7 7 Note that sampling x, y uniformly
from [N] is statistically close to sam-
pling x, y uniformly from [ϕ(N)].3. Let u := A(g, gx · v, gy · v)8 and compute w := u

gxy ·vx+y .
8 Note that gx · v where x ← [N] is
statistically close to gx where x ← [N].
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4. If w2 = v2 mod N and u ̸= ±v, then compute the factors of N as
gcd(N, u + v) and N/gcd(N, u + v). Otherwise, output ⊥.

Observe that if A solves the CDH problem then the returned values
u = g(x+2−1)(y+2−1) = v2xy+x+y+2−1

. Consequently, the computed
value w = v2−1

. Furthermore, with probability 1
2 we have that w ̸= v.

In this case, B can factor N.



2
One-Way Functions

Cryptographers often attempt to base cryptographic results on con-
jectured computational assumptions to leverage reduced adversarial
capabilities. Furthermore, the security of these constructions is no
better than the assumptions they are based on.

Cryptographers seldom sleep well.1 1 Quote by Silvio Micali in personal
communication with Joe Kilian.

Thus, basing cryptographic tasks on the minimal necessary assump-
tions is a key tenet in cryptography. Towards this goal, rather can
making assumptions about specific computational problem in num-
ber theory, cryptographers often consider abstract primitives. The
existence of these abstract primitives can then be based on one or
more computational problems in number theory.

The weakest abstract primitive cryptographers consider is one-way
functions. Virtually, every cryptographic goal of interest is known
to imply the existence of one-way functions. In other words, most
cryptographic tasks would be impossible if the existence of one-way
functions was ruled out. On the flip side, the realizing cryptographic
tasks from just one-way functions would be ideal.

2.1 Definition

A one-way function f : {0, 1}n → {0, 1}m is a function that is easy
to compute but hard to invert. This intuitive notion is trickier to
formalize than it might appear on first thought.
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Definition 2.1 (One-Way Functions). A function f : {0, 1}∗ → {0, 1}∗
is said to be one-way function if:

- Easy to Compute: ∃ a (deterministic) polynomial time machine M such
that ∀x ∈ {0, 1}∗ we have that

M(x) = f (x)

- Hard to Invert: ∀ non-uniform PPT adversary A we have that

µA, f (n) = Pr
x $←{0,1}n

[A(1n, f (x)) ∈ f−1( f (x))] (2.1)

is a negligible function, x $← {0, 1}n denotes that x is drawn uniformly
at random from the set {0, 1}n, f−1( f (x)) = {x′ | f (x) = f (x′)}, and
the probability is over the random choices of x and the random coins of
A2.

{0, 1}n {0, 1}m

Easy to Compute

Hard to Invert

Figure 2.1: Visulizing One-way Funca-
tions

2 Typically, the probability is only
taken over the random choices of x,
since we can fix the random coins of
the adversary A that maximize its
advantage.

We note that the function is not necessarily one-to-one. In other
words, it is possible that f (x) = f (x′) for x ̸= x′ – and the adversary
is allowed to output any such x′.

The above definition is rather delicate. We next describe problems
in the slight variants of this definition that are insecure.

1. What if we require that Pr
x $←{0,1}n

[A(1n, f (x)) ∈ f−1( f (x))] = 0

instead of being negligible?

This condition is false for every function f . An adversary A that
outputs an arbitrarily fixed value x0 succeeds with probability at
least 1/2n, as x0 = x with at least the same probability.

2. What if we drop the input 1n to A in Equation 2.1?

Consider the function f (x) = |x|. In this case, we have that m =

log2 n, or n = 2m. Intuitively, f should not be considered a one-
way function, because it is easy to invert f . Namely, given a value
y any x such that |x| = y is such that x ∈ f−1(y). However,
according to this definition the adversary gets an m bit string as
input, and hence is restricted to running in time polynomial in m.
Since each possible x is of size n = 2m, the adversary doesn’t even
have enough time to write down the answer! Thus, according to
the flawed definition above, f would be a one-way function.

Providing the attacker with 1n (n repetitions of the 1 bit) as addi-
tional input avoids this issue. In particular, it allows the attacker to
run in time polynomial in m and n.

Candidate One-way Functions. It is not known whether one-way
functions exist. In fact, the existence of one-way functions would
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imply that P ̸= NP (see Exercise 2.3).
However, there are candidates of functions that could be one-way

functions, based on the difficulty of certain computational problems.
(See Section 1.3)

Let’s suppose that the discrete-log assumption hold for group
ensemble G = {Gn} then we have that the function family { fn}
where fn : {1, . . . |Gn|} → Gn is a one-way function family. In
particular, fn(x) = gx where g is the generator of the group Gn. The
proof that { fn} is one-way based on the Discrete-Log Assumption
(see Definition 1.5) is left as as an exercise.

2.2 Robustness and Brittleness of One-way Functions

What operations can we perform on one-way functions and still have
a one-way function? In this section, we explore the robustness and
brittleness of one-way functions and some operations that are safe or
unsafe to perform on them.

2.2.1 Robustness

Consider having a one-way function f . Can we use this function f
in order to make a more structured one-way function g such that
g(x0) = y0 for some constants x0, y0, or would this make the function
no longer be one-way?

Intuitively, the answer is yes - we can specifically set g(x0) = y0,
and otherwise have g(x) = f (x). In this case, the adversary gains
the knowledge of how to invert y0, but that will only happen with
negligible probability, and so the function is still one-way.

In fact, this can be done for an exponential number of x0, y0 pairs.
To illustrate that, consider the following function:

g(x1∥x2) =

{
x1∥x2 : x1 = 0n/2

f (x1∥x2) : otherwise

However, this raises an apparent contradiction - according to this
theorem, given a one-way function f , we could keep fixing each of
its values to 0, and it would continue to be a one-way function. If we
kept doing this, we would eventually end up with a function which
outputs 0 for all of the possible values of x. How could this still be
one-way?

The resolution of this apparent paradox is by noticing that a one-
way function is only required to be one-way in the limit where n
grows very large. So, no matter how many times we fix the values
of f to be 0, we are still only setting a finite number of x values to 0.
However, this will still satisfy the definition of a one-way function
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- it is just that we will have to use larger and larger values of n0 in
order to prove that the probability of breaking the one-way function
is negligible.

2.2.2 Brittleness

Example: OWFs do not always compose securely. Given a one-way
function f : {0, 1}n → {0, 1}n, is the function f 2(x) = f ( f (x)) also
a one-way function? Intuitively, it seems that if it is hard to invert
f (x), then it would be just as hard to invert f ( f (x)). However, this
intuition is incorrect and highlights the delicacy when working with
cryptographic assumptions and primitives. In particular, assuming
one-way functions exists we describe a one-way function f : {0, 1}n ×
{0, 1}n → {0, 1}2n such that f 2 can be efficiently inverted. Let g :
{0, 1}n → {0, 1}n be a one-way function then we set f as follows:

f (x1, x2) = 0n∥g(x1)

Two observations follow:

1. f 2 is not one-way. This follows from the fact that for all inputs
x1, x2 we have that f 2(x1, x2) = 02n. This function is clearly not
one-way!

2. f is one-way. This can be argued as follows. Assume that there ex-
ists an adversary A such that µA, f (n) = Pr

x $←{0,1}n
[A(12n, f (x)) ∈

f−1( f (x))] is non-negligible. Using such an A we will describe a
construction of adversary B such that µB,g(n) = Pr

x $←{0,1}n
[B(1n, g(x)) ∈

g−1(g(x))] is also non-negligible. This would be a contradiction
thus proving our claim.

Description of B: B on input y ∈ {0, 1}n outputs the n lower-order
bits of A(12n, 0n∥y).
Observe that if A successfully inverts f then we have that B suc-
cessfully inverts g. More formally, we have that:

µB,g(n) = Pr
x $←{0,1}n

[
A(12n, 0n||g(x)) ∈ {0, 1}n||g−1(g(x))

]
.

But

µA, f (2n) = Pr
x1,x2

$←{0,1}2n
[A(12n, f (x1, x2)) ∈ f−1( f (x̃))]

= Pr
x1

$←{0,1}n
[A(12n, 0n||g(x2)) ∈ {0, 1}n||g−1(g(x2))]

=µB,g(n).

Hence, we have that µB,g(n) = µA, f (2n) which is non-negligible as
long as µA, f (2n) is non-negligible.
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Example: Dropping a bit is not always secure. Below is another ex-
ample of a transformation that does not work. Given any one-way
function g, let g′(x) be g(x) with the first bit omitted.

Claim 2.1. g′ is not necessarily one-way. In other words, there exists a
OWF function g for which g′ is not one-way.

Proof. We must (1) construct a function g, (2) show that g is one-way,
and (3) show that g′ is not one-way.
Step 1: Construct a OWF g. To do this, we first want to come up
with a (contrived) function g and prove that it is one-way. Let us
assume that there exists a one-way function h : {0, 1}n → {0, 1}n. We
define the function g : {0, 1}2n → {0, 1}2n as follows:

g(x∥y) =

0n∥y if x = 0n

1∥0n−1∥g(y) otherwise

Step 2: Prove that g is one-way.

Claim 2.2. If h is a one-way function, then so is g.

Proof. Assume for the sake of contradiction that g is not one-way.
Then there exists a polynomial time adversary A and a non-negligible
function µ(·) such that:

Pr
x,y
[A(1n, g(x∥y)) ∈ g−1(g(x∥y))] = µ(n)

We will use such an adversary A to invert h with some non-negligible
probability. This contradicts the one-wayness of h and thus our as-
sumption that g is not one-way function is false.

Let us now construct an B that uses A and inverts h. B is given
1n, h(y) for a randomly chosen y and its goal is to output y′ ∈
h−1(h(y)) with some non-negligible probability. B works as follows:

1. It samples x ← {0, 1}n randomly.

2. If x = 0n, it samples a random y′ ← {0, 1}n and outputs it.

3. Otherwise, it runs A(10n−1∥h(y)) and obtains x′∥y′. It outputs y′.

Let us first analyze the running time of B. The first two steps are
clearly polynomial (in n) time. In the third step, B runs A and uses
its output. Note that the running time of since A runs in polynomial
(in n) time, this step also takes polynomial (in n) time. Thus, the
overall running time of B is polynomial (in n).

Let us now calculate the probability that B outputs the correct
inverse. If x = 0n, the probability that y′ is the correct inverse is
at least 1

2n (because it guesses y′ randomly and probability that a
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random y′ is the correct inverse is ≥ 1/2n). On the other hand, if
x ̸= 0n, then the probability that B outputs the correct inverse is µ(n).
Thus,

Pr[B(1n, h(y)) ∈ h−1(h(y))] ≥ Pr[x = 0n](
1
2n ) + Pr[x ̸= 0n]µ(n)

=
1

22n + (1− 1
2n )µ(n)

≥ µ(n)− (
1
2n −

1
22n )

Since µ(n) is a non-negligible function and ( 1
2n − 1

22n ) is a negligi-
ble function, their difference is non-negligible.3 This contradicts the 3 Exercise: Prove that if α(·) is a non-

negligible function and β(·) is a neg-
ligible function, then (α − β)(·) is a
non-negligible function.

one-wayness of h.

Step 3: Prove that g′ is not one-way. We construct the new function
g′ : {0, 1}2n → {0, 1}2n−1 by dropping the first bit of g. That is,

g′(x∥y) =

0n−1∥y if x = 0n

0n−1∥g(y) otherwise

We now want to prove that g′ is not one-way. That is, we want
to design an adversary C such that given 12n and g′(x∥y) for a ran-
domly chosen x, y, it outputs an element in the set g−1(g(x∥y). The
description of C is as follows:

• On input 12n and g′(x∥y), the adversary C parses g′(x∥y) as
0n−1∥y.

• It outputs 0n∥y as the inverse.

Notice that g′(0n∥y) = 0n−1∥y. Thus, C succeeds with probability 1
and this breaks the one-wayness of g′.

2.3 Hardness Amplification

In this section, we show that even a very weak form of one-way func-
tions suffices from constructing one-way functions as defined previ-
ously. For this section, we refer to this previously defined notion as
strong one-way functions.
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Definition 2.2 (Weak One-Way Functions). A function f : {0, 1}n →
{0, 1}m is said to be a weak one-way function if:

- f is computable by a polynomial time machine, and

- There exists a noticeable function α f (·) such that ∀ non-uniform PPT
adversaries A we have that

µA, f (n) = Pr
x $←{0,1}n

[A(1n, f (x)) ∈ f−1( f (x))] ≤ 1− α f (n).

Theorem 2.1. If there exists a weak one-way function, then there exists a
(strong) one-way function.

Proof. We prove the above theorem constructively. Suppose f :
{0, 1}n → {0, 1}m is a weak one-way function, then we prove that
the function g : {0, 1}nq → {0, 1}mq for q = ⌈ 2n

α f (n)
⌉ where

g(x1, x2, · · · , xq) = f (x1)|| f (x2)|| · · · || f (xq),

is a strong one-way function. Let us discuss the intuition. A weak
one-way function is "strong" in a small part of its domain. For this
construction to result in a strong one-way function, we need just
one of the q instantiations to be in the part of the domain where our
weak one-way function is strong. If we pick a large enough q, this is
guaranteed to happen.

Assume for the sake of contradiction that there exists an adversary
B such that µB,g(nq) = Pr

x $←{0,1}nq [B(1
nq, g(x)) ∈ g−1(g(x))] is non-

negligible. Then we use B to construct A (see Figure 2.2) that breaks
f , namely µA, f (n) = Pr

x $←{0,1}n
[A(1n, f (x)) ∈ f−1( f (x))] > 1− α f (n)

for sufficiently large n.

1. i $← [q].

2. x1, · · · , xi−1, xi , · · · , xq
$← {0, 1}n.

3. Set yj = f (xj) for each j ∈ [q]\{i}
and yi = y.

4. (x′1, x′2, · · · , x′q) :=
B( f (x1), f (x2), · · · , f (xq)).

5. f (x′i) = y then output x′i else ⊥.

Figure 2.2: Construction of A(1n, y)

Note that: (1) A(1n, y) iterates at most T = 4n2

α f (n)µB,g(nq) times each

call is polynomial time. (2) µB,g(nq) is a non-negligible function. This
implies that for infinite choices of n this value is greater than some
noticeable function. Together these two facts imply that for infinite
choices of n the running time of A is bounded by a polynomial func-
tion in n.

It remains to show that Pr
x $←{0,1}n

[A(1n, f (x)) = ⊥] < α f (n) for

arbitrarily large n. A natural way to argue this is by showing that at
least one execution of B should suffice for inverting f (x). However,
the technical challenge in proving this formally is that these calls to
B aren’t independent. Below we formalize this argument even when
these calls aren’t independent.

Lemma 2.1. Let A be any an efficient algo-
rithm such that Prx,r [A(x, r) = 1] ≥ ϵ.
Additionally, let G = {x |≥ Prr [A(x, r) =
1] ≥ ϵ

2 }. Then, we have Prx [x ∈ G] ≥ ϵ
2 .

Proof. The proof of this lemma follows
by a very simple counting argument.
Let’s start by assuming that Prx [x ∈
G] < ϵ

2 . Next, observe that

Pr
x,r
[A(x, r) = 1]

= Pr
x
[x ∈ G] · Pr

x,r
[A(x, r) = 1 | x ∈ G]

+ Pr
x
[x ̸∈ G] · Pr

x,r
[A(x, r) = 1 | x ̸∈ G]

<
ϵ

2
· 1 + 1 · ϵ

2
< ϵ,

which is a contradiction.

Define the set S of “bad” x’s, which are hard to invert:

S :=

{
x

∣∣∣∣∣Pr
B
[A inverts f (x) in a single iteration] ≤

α f (n)µB,g(nq)
4n

}
.



20 a course in theory of cryptography

We start by proving that the size of S is small. More formally,

Pr
x $←{0,1}n

[x ∈ S] ≤
α f (n)

2
.

Assume, for the sake of contradiction, that Pr
x $←{0,1}n

[x ∈ S] >
α f (n)

2 . Lemma 2.2. Let A be any an efficient
algorithm such that Prx,r [A(x1, . . . xn, r) =
1] ≥ ϵ. Additionally, let G = {x |≥
Prx1 ,...xn ,r [A(x, r) = 1 | ∃i, x = xi ] ≥ ϵ

2 }.
Then, we have Prx [x ∈ G] ≥ ϵ

2 .

Proof. The proof of this lemma follows
by a very simple counting argument.
Let’s start by assuming that Prx [x ∈
G] < ϵ

2 . Next, observe that

Pr
x,r
[A(x, r) = 1]

= Pr
x
[x ∈ G] · Pr

x,r
[A(x, r) = 1 | x ∈ G]

+ Pr
x
[x ̸∈ G] · Pr

x,r
[A(x, r) = 1 | x ̸∈ G]

<
ϵ

2
· 1 + 1 · ϵ

2
< ϵ,

which is a contradiction.

Then we have that:

µB,g(nq) = Pr
(x1,··· ,xq)

$←{0,1}nq
[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq))]

= Pr
x1,··· ,xq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ ∀i : xi /∈ S]

+ Pr
x1,··· ,xq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ ∃i : xi ∈ S]

≤ Pr
x1,··· ,xq

[∀i : xi /∈ S] +
q

∑
i=1

Pr
x1,··· ,xq

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ xi ∈ S]

≤
(

1−
α f (n)

2

)q

+ q · Pr
x1,··· ,xq ,i

[B(1nq, g(x1, · · · , xq)) ∈ g−1(g(x1, · · · , xq)) ∧ xi ∈ S]

=

(
1−

α f (n)
2

) 2n
α f (n)

+ q · Pr
x $←{0,1}n ,B

[A inverts f (x) in a single iteration∧ x ∈ S]

≤e−n + q · Pr
x
[x ∈ S] · Pr[A inverts f (x) in a single iteration | x ∈ S]

≤e−n +
2n

α f (n)
· 1 ·

µB,g(nq) · α f (n)
4n

≤e−n +
µB,g(nq)

2
.

Hence µB,g(nq) ≤ 2e−n, contradicting with the fact that µB,g is non-
negligible. Then we have

Pr
x $←{0,1}n

[A(1n, f (x)) = ⊥]

=Pr
x
[x ∈ S] + Pr

x
[x /∈ S] · Pr[B fails to invert f (x) in every iteration|x /∈ S]

≤
α f (n)

2
+ (Pr[B fails to invert f (x) a single iteration|x /∈ S])T

≤
α f (n)

2
+

(
1−

µA,g(nq) · α f (n)
4n

)T

≤
α f (n)

2
+ e−n ≤ α f (n)

for sufficiently large n. This concludes the proof.

2.4 Levin’s One-Way Function

In this section, we discuss Levin’s one-way function, which is an
explicit construction of a one-way function that is secure as long as a
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one-way function exists. This is interesting because unlike a typical
cryptographic primitive that relies on a specific hardness assumption
(which may or may not hold in the future), Levin’s one-way function
is future-proof in the sense that it will be secure as long as atleast one
hardness assumption holds (which we may or may not discover).

The high-level intuition behind Levin’s construction is as follows:
since we assume one-way functions exist, there exists a uniform ma-
chine M̃ such that |M̃| is a constant and M̃(x) is hard to invert for
a random input x. Now, consider a function h that parses the first
log(n) bits of its n-bit input as the code of a machine M and the
remaining bits as the input to M. For a large enough n that is expo-
nential in |M̃|, note that we will hit the code of M̃ with noticeable
probability in n, and for those instances, h will be hard to invert. It
is easy to see that this gives us a weak one-way function which has a
noticeable probability of being hard to invert, and we can amplify the
hardness of this weak one-way function to get an explicit construc-
tion of a one-way function.

Theorem 2.2. If there exists a one-way function, then there exists an ex-
plicit function f that is one-way (constructively).

Before we look at the construction and the proof in detail, we first
prove a lemma that will be useful in the proof. In particular, we need
a bound on the running time of the one-way function M̃ so that we
can upper bound the execution time of h, since there could be inputs
to g that do not terminate in polynomial time. To this end, we prove
the following lemma which shows that if a one-way function exists,
then there is also a one-way function that runs in time n2, and thus,
we can bound h to n2 steps.

Lemma 2.3. If there exists a one-way function computable in time nc for a
constant c, then there exists a one-way function computable in time n2.

Proof. Let f : {0, 1}n → {0, 1}n be a one-way function computable in
time nc. Construct g : {0, 1}n+nc → {0, 1}n+nc

as follows:

g(x, y) = f (x)||y

where x ∈ {0, 1}n, y ∈ {0, 1}nc
. g(x, y) takes time 2nc, which is linear

in the input length.
We next show that g(·) is one-way. Assume for the purpose of

contradiction that there exists an adversary A such that µA,g(n +

nc) = Pr
(x,y) $←{0,1}n+nc [A(1n+nc

, g(x, y)) ∈ g−1(g(x, y))] is non-

negligible. Then we use A to construct B such that µB, f (n) =

Pr
x $←{0,1}n

[B(1n, f (x)) ∈ f−1( f (x))] is also non-negligible.
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B on input z ∈ {0, 1}n, samples y $← {0, 1}nc
, and outputs the n

higher-order bits of A(1n+nc
, z||y). Then we have

µB,g(n) = Pr
x $←{0,1}n ,y $←{0,1}nc

[
A(1n+nc

, f (x)||y) ∈ f−1( f (x))||{0, 1}nc
]

≥ Pr
x,y

[
A(1n+nc

, g(x, y)) ∈ f−1( f (x))||y
]

= Pr
x,y

[
A(1n+nc

, g(x, y)) ∈ g−1(g(x, y))
]

is non-negligible.

Now, we provide the explicit construction of h and prove that it
is a weak one-way function. Since h is an (explicit) weak one-way
function, we can construct an (explicit) one-way function from h as
we discussed in Section 2.3, and this would prove Theorem 2.2.

Proof of Theorem 2.2. h : {0, 1}n → {0, 1}n is defined as follows:

h(M, x) =

{
M||M(x) if M(x) takes no more than |x|2 steps
M||0 otherwise

where |M| = log n, |x| = n− log n (interpreting M as the code of a
machine and x as its input).

It remains to show that if one-way functions exist, then h is a
weak one-way function, with αh(n) = 1

n2 . Assume for the pur-
pose of contradiction that there exists an adversary A such that
µA,h(n) = Pr

(M,x) $←{0,1}n
[A(1n, h(M, x)) ∈ h−1(h(M, x))] ≥ 1− 1

n2

for all sufficiently large n. By the existence of one-way functions
and Lemma 2.3, there exists a one-way function M̃ that can be com-
puted in time n2. Let M̃ be the uniform machine that computes this
one-way function. We will consider values n such that n > 2|M̃|. In
other words for these choices of n, M̃ can be described using log n
bits. We construct B to invert M̃: on input y outputs the (n− log n)
lower-order bits of A(1n, M̃||y). Then

µB,M̃(n− log n) = Pr
x $←{0,1}n−log n

[
A(1n, M̃||M̃(x)) ∈ {0, 1}log n||M̃−1(M̃((x))

]
≥ Pr

x $←{0,1}n−log n

[
A(1n, M̃||M̃(x)) ∈ M̃||M̃−1(M̃((x))

]
.

Observe that for sufficiently large n it holds that

1− 1
n2 ≤µA,h(n)

= Pr
(M,x) $←{0,1}n

[
A(1n, h(M, x)) ∈ h−1(h(M, x))

]
≤Pr

M
[M = M̃] · Pr

x

[
A(1n, M̃||M̃(x)) ∈ M̃||M̃−1(M̃((x))

]
+ Pr

M
[M ̸= M̃]

≤ 1
n
· µB,M̃(n− log n) +

n− 1
n

.
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Hence µB,M̃(n − log n) ≥ n−1
n for sufficiently large n which is a

contradiction.

2.5 Hardness Concentrate Bit

We start by asking the following question: Is it possible to concen-
trate the strength of a one-way function into one bit? In particular,
given a one-way function f , does there exist one bit that can be com-
puted efficiently from the input x, but is hard to compute given f (x)?

Definition 2.3 (Hard Concentrate Bit). Let f : {0, 1}n → {0, 1}n be a
one-way function. B : {0, 1}n → {0, 1} is a hard concentrate bit of f if:

- B is computable by a polynomial time machine, and

- ∀ non-uniform PPT adversaries A we have that

Pr
x $←{0,1}n

[A(1n, f (x)) = B(x)] ≤ 1
2
+ negl(n).

A simple example. Let f be a one-way function. Consider the one-
way function g(b, x) = 0|| f (x) and a hard concentrate bit B(b, x) = b.
Intuitively, the value g(b, x) does not reveal any information about
the first bit b, thus no information about the value B(b, x) can be as-
certained. Hence A cannot predict the first bit with a non-negligible
advantage than a random guess. However, we are more interested in
the case where the hard concentrate bit is hidden because of compu-
tational hardness and not information theoretic hardness.

Remark 2.1. Given a one-way function f , we can construct another one-
way function g with a hard concentrate bit. However, we may not be able
to find a hard concentrate bit for f . In fact, it is an open question whether a
hard concentrate bit exists for every one-way function.

Intuitively, if a function f is one-way, it seems that there should
be a particular bit in the input x that is hard to compute given f (x).
However, we show that is not true:

Claim 2.3. If f : {0, 1}n → {0, 1}n is a one-way function, then there exists
a one-way function g : {0, 1}n+log n → {0, 1}n+log n such that ∀i ∈ [1, n +

log n], Bi(x) = xi is not a hard concentrate bit, where xi is the ith bit of x.

Proof. Define g : {0, 1}n+log(n) → {0, 1}n+log(n) as follows.

g(x, y) = f (xȳ)||xy||y,

where |x| = n, |y| = log n, xȳ is all bits of x except the yth bit, and xy

is the yth bit of x.
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First, one can show that g is still a one-way function. (We leave
this as an exercise!) Next, we show that Bi is not a hard concentrate
bit for ∀i ∈ [1, n] (clearly Bi is not a hard concentrate bit for i ∈
[n + 1, n + log n]). Construct an adversary Ai(1n+log n, f (xȳ)||xy||y)
that “breaks” Bi:

- If y ̸= i then output a random bit;

- Otherwise output xy.

Pr
x,y
[A(1n+log n, g(x, y)) = Bi(x)]

= Pr
x,y
[A(1n+log n, f (xȳ)||xy||y) = xi]

=
n− 1

n
· 1

2
+

1
n
· 1 =

1
2
+

1
2n

.

Hence Ai can guess the output of Bi with greater than 1
2 + negl(n)

probability.

2.5.1 Hard Concentrate Bit of any One-Way Permutation

We now show that a slight modification of every one-way function
has a hard concentrate bit. More formally,

Theorem 2.3. Let f : {0, 1}n → {0, 1}n be a one-way function. Define a
function g : {0, 1}2n → {0, 1}2n as follows:

g(x, r) = f (x)||r,

where |x| = |r| = n. Then we have that g is one-way and that it has a hard
concentrate bit, namely B(x, r) = ∑n

i=1 xiri mod 2.

Remark 2.2. If f is a (one-to-one) one-way function, then g is also a (one-
to-one) one-way function with hard concentrate bit B(·).

Proof. We leave it as an exercise to show that g is a one-way func-
tion and below we will prove that the function B(·) describe a hard
concentrate bit of g. More specifically, we need to show that if there
exists a non-uniform PPT A s.t. Prx,r[A(12n, g(x, r)) = B(x, r)] ≥
1
2 + ϵ(n), where ϵ is non-negligible, then there exists a non-uniform
PPT B such that Prx,r[B(12n, g(x, r)) ∈ g−1(g(x, r))] is non-negligible.
Below we use E to denote the event that A(12n, g(x, r)) = B(x, r). We
will present our proof in three steps, where each step progressively
increases in complexity: (1) the super simple case where we restrict
to A such that Prx,r[E] = 1, (2) the simple case where we restrict to A
such that Prx,r[E] ≥ 3

4 + ϵ(n), and finally (3) the general case where
Prx,r[E] ≥ 1

2 + ϵ(n).



one-way functions 25

Super simple case. Suppose A guesses B(·) with perfect accuracy:

Pr
x,r
[E] = 1.

We now construct B that inverts g with perfect accuracy. Let ei de-
note the one-hot n-bit string 0 · · · 010 · · · 0, where only the i-th bit
is 1, the rest are all 0. B gets f (x)||r as input, and its algorithm is
described in Figure 2.3.

for i = 1 to n do
x′i ← A(12n, f (x)||ei)

end for
return x′1 · · · x′n||r

Figure 2.3: Super-Simple Case B
Observe that B(x, ei) = ∑n

j=1 xjei
j = xi. Therefore, the probability

that B inverts a single bit successfully is,

Pr
x

[
A(12n, f (x)||ei) = xi

]
= Pr

x

[
A(12n, f (x)||ei) = B(x, ei)

]
= 1.

Hence Prx,r[B(12n, g(x, r)) = (x, r)] = 1.

Simple case. Next moving on to the following more demanding case.

Pr
x,r
[E] ≥ 3

4
+ ϵ(n),

where ϵ(·) is non-negligible. We describe B’s algorithm for inverting
g in Figure 2.4. Here we can no longer use the super simple case
algorithm because we no longer know if A outputs the correct bit
on input f (x)∥ei. Instead, we introduce randomness to A’s input
expecting that it should be able to guess the right bit on majority
of those inputs since it has a high probability of guessing B(·) in
general. We now also need to make two calls to A to isolate the i-th
bit of x. Note that an iteration of B outputs the right bit if calls to A
output the correct bit because B(x, s)⊕ B(x, s⊕ ei) = xi:

for i = 1 to n do
for t = 1 to T = n

2ϵ(n)2 do

s $← {0, 1}n

xt
i ←A( f (x)||s)
⊕ A( f (x)||(s⊕ ei))

end for
x′i ← the majority of {x1

i , · · · , xT
i }

end for
return x′1 · · · x′n||R

Figure 2.4: Simple Case B
B(x, s)⊕ B(x, s⊕ ei) =∑

j
xjsj ⊕∑

j
xj(sj ⊕ ei

j)

=∑
j ̸=i

(xjsj ⊕ xjsj)⊕ xisi ⊕ xi(si ⊕ 1)

= xi

The key technical challenge in proving that B inverts g with non-
negligible probability arises from the fact that the calls to A made
during one iteration of B are not independent. In particular, all calls
to A share the same x and the calls A( f (x)||s) and A( f (x)||(s⊕ ei))

use correlated randomness as well.
We solve the first issue by showing that there exists a large set of x

values for which A still works with large probability. The latter issue
of lack of independence between A( f (x)||s) and A( f (x)||(s⊕ ei)) can
be solved using a union bound since the success probability of the
adversary A is high enough.



26 a course in theory of cryptography

Formally, define the set G of “good” x’s, for which it is easy for A
to predict the right bit:

G :=
{

x
∣∣∣∣Pr

r
[E] ≥ 3

4
+

ϵ(n)
2

}
.

Now we prove that G is not a small set. More formally, we claim that:

Pr
x $←{0,1}n

[x ∈ G] ≥ ϵ(n)
2

.

Assume that Pr
x $←{0,1}n

[x ∈ G] < ϵ(n)
2 . Then we have the following

contradiction:
3
4
+ ϵ(n) ≤ Pr

x,r
[E]

= Pr
x
[x ∈ G]Pr

r
[E|x ∈ G] + Pr

x
[x /∈ G]Pr

r
[E|x /∈ G]

<
ϵ(n)

2
· 1 + 1 ·

(
3
4
+

ϵ(n)
2

)
=

3
4
+ ϵ(n).

Now consider a single iteration for a fixed x ∈ G:

Pr
s

[
A( f (x), s)⊕A( f (x), s⊕ ei) = xi

]
= Pr

s
[Both A’s are correct] + Pr

s
[Both A’s are wrong]

≥ Pr
s
[Both A’s are correct] = 1− Pr

s
[Either A is wrong]

≥ 1− 2 · Pr
s
[A is wrong]

≥ 1− 2
(

1
4
− ϵ(n)

2

)
=

1
2
+ ϵ(n).

Let Yt
i be the indicator random variable that xt

i = xi (namely, Yt
i =

1 with probability Pr[xt
i = xi] and Yt

i = 0 otherwise). Note that
Y1

i , · · · , YT
i are independent and identical random variables, and for

all t ∈ {1, . . . , T}, we have Pr[Yt
i = 1] = Pr[xt

i = xi] ≥ 1
2 + ϵ(n). Next

we argue that majority of xt
i coincide with xi with high probability.

Pr[x′i ̸= xi] = Pr

[
T

∑
t=1

Yt
i ≤

T
2

]

= Pr

[
T

∑
t=1

Yt
i −

(
1
2
+ ϵ(n)

)
T ≤ T

2
−
(

1
2
+ ϵ(n)

)
T

]

≤ Pr

[∣∣∣∣∣ T

∑
t=1

Yt
i −

(
1
2
+ ϵ(n)

)
T

∣∣∣∣∣ ≥ ϵ(n)T

]
Let X1, · · · , Xm be i.i.d. random variables taking values 0 or 1. Let Pr[Xi = 1] = p.

By Chebyshev’s Inequality, Pr
[∣∣∑ Xi − pm

∣∣ ≥ δm
]
≤ 1

4δ2m
.

≤ 1
4ϵ(n)2T

=
1

2n
.
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Then, completing the argument, we have

Pr
x,r
[B(12n, g(x, r)) = (x, r)]

≥ Pr
x
[x ∈ G]Pr[x′1 = x1, · · · x′n = xn|x ∈ G]

≥ ϵ(n)
2
·
(

1−
n

∑
i=1

Pr[x′i ̸= xi|x ∈ G]

)

≥ ϵ(n)
2
·
(

1− n · 1
2n

)
=

ϵ(n)
4

.

Real Case. Now, we describe the final case where Prx,r[E] ≥ 1
2 + ϵ(n)

and ϵ(·) is a non-negligible function. The key technical challenge in
this case is that we cannot make two related calls to A as was done
in the simple case above since we can’t argue that both calls to A
will be correct with high enough probability. However, just using
one call to A seems insufficient. The key idea is to just guess one of
those values. Very surprisingly, this idea along with careful analysis
magically works out. Just like the previous two cases, we start by
describing the algorithm B in Figure 2.5.

T = 2n
ϵ(n)2

for ℓ = 1 to log T do

sℓ
$← {0, 1}n

bℓ
$← {0, 1}

end for
for i = 1 to n do

for all L ⊆ {1, 2, · · · , log T} do
SL :=

⊕
j∈L sj

BL :=
⊕

j∈L bj

xL
i ← BL ⊕A( f (x)||SL ⊕ ei)

end for
x′i ← majority of {x∅

i , · · · , x[log T]
i }

end for
return x′1 · · · x′n||R

Figure 2.5: Real Case B

In the beginning of the algorithm, B samples log T random strings
{sℓ}ℓ and bits {bℓ}ℓ. Since there are only log T values, with prob-
ability 1

T (which is polynomial in n) all the bℓ’s are correct, i.e.,
bℓ = B(x, sℓ). In the rest of this proof, we denote this event as F.
Now note that if F happens, then BL as defined in the algorithm is
also equal to B(x, SL) (we denote the kth-bit of s with (s)k):

B(x, SL) =
n

∑
k=1

xk(
⊕
j∈L

sj)k

=
n

∑
k=1

xk ∑
j∈L

(
sj
)

k

= ∑
j∈L

n

∑
k=1

xk(sj)k

= ∑
j∈L

B(x, sj)

= ∑
j∈L

bj

= BL

Thus, with probability 1
T , we have all the right guesses for one

of the invocations, and we just need to bound the probability that
A( f (x)||SL ⊕ ei) = B(x, SL ⊕ ei). However there is a subtle issue.
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Now the events Y∅
i , · · · , Y[log T]

i are no longer independent. Never-
theless, we can still show that they are pairwise independent, and the
Chebyshev’s Inequality still holds. Now we give the formal proof.

Just as in the simple case, we define the set G as

G :=
{

x
∣∣∣∣Pr

r
[E] ≥ 1

2
+

ϵ(n)
2

}
,

and with an identical argument we obtain that:

Pr
x $←{0,1}n

[x ∈ G] ≥ ϵ(n)
2

Pairwise Independence and Cheby-
shev’s Inequality. For the sake of com-
pleteness, we prove the Chebyshev’s
Inequality here.

Definition 2.4 (Pairwise Indepen-
dence). A collection of random variables
{X1, · · · , Xm} is said to be pairwise in-
dependent if for every pair of random
variables (Xi , Xj), i ̸= j and every pair of
values (vi , vj), it holds that

Pr[Xi = vi , Xj = vj] = Pr[Xi = vi ]Pr[Xj = vj]

Theorem 2.4 (Chebyshev’s Inequality).
Let X1, . . . , Xm be pairwise independent
and identically distributed binary random
variables. In particular, for every i ∈ [m],
Pr[Xi = 1] = p for some p ∈ [0, 1] and
Pr[Xi = 0] = 1− p. Then it holds that

Pr

[∣∣∣∣∣ m

∑
i=1

Xi − pm

∣∣∣∣∣ ≥ δm

]
≤ 1

4δ2m
.

Proof. Let Y = ∑i Xi . Then

Pr

[∣∣∣∣∣ m

∑
i=1

Xi − pm

∣∣∣∣∣ > δm

]

= Pr

( m

∑
i=1

Xi − pm

)2

> δ2m2


≤

E
[
|Y− pm|2

]
δ2m2 =

Var(Y)
δ2m2

Observe that

Var(Y) = E
[
Y2
]
− (E[Y])2

=
m

∑
i=1

m

∑
j=1

(
E
[
XiXj

]
−E [Xi ]E

[
Xj
])

By pairwise independence, for i ̸= j,

E
[
XiXj

]
= E [Xi ]E

[
Xj
]
.

=
m

∑
i=1

E
[

X2
i

]
−E [Xi ]

2

= mp(1− p).

Hence

Pr

[∣∣∣∣∣ m

∑
i=1

Xi − pm

∣∣∣∣∣ ≥ δm

]
≤ mp(1− p)

δ2m2 ≤ 1
δ2m

.

Next, given {bℓ = B(x, sℓ)}ℓ∈[log T] and x ∈ G, we have:

Pr
r

[
BL ⊕A( f (x)||SL ⊕ ei) = xi

]
= Pr

r

[
B(x, SL)⊕A( f (x)||SL ⊕ ei) = xi

]
= Pr

r

[
A( f (x)||SL ⊕ ei) = B(x, SL ⊕ ei)

]
≥ 1

2
+

ϵ(n)
2

For the same {bℓ}ℓ and x ∈ G, let YL
i be the indicator random vari-

able that xL
i = xi. Notice that Y∅

i , · · · , Y[log T]
i are pairwise indepen-

dent and Pr[YL
i = 1] = Pr[xL

i = xi] ≥ 1
2 + ϵ(n)

2 .

Pr[x′i ̸= xi] =Pr

 ∑
L⊆[log T]

YL
i ≤

T
2


=Pr

 ∑
L⊆[log T]

YL
i −

(
1
2
+

ϵ(n)
2

)
T ≤ T

2
−
(

1
2
+

ϵ(n)
2

)
T


≤Pr

∣∣∣∣∣∣ ∑
L⊆[log T]

YL
i −

(
1
2
+

ϵ(n)
2

)
T

∣∣∣∣∣∣ ≥ ϵ(n)
2

T


(By Theorem 2.4)

≤ 1

4
(

ϵ(n)
2

)2
T

=
1

2n
.

Completing the proof, we have that:

Pr
x,r
[B(12n, g(x, r)) = (x, r)]

≥ Pr
{bℓ,sℓ}ℓ

[F] · Pr
x
[x ∈ G] · Pr[x′1 = x1, · · · x′n = xn | x ∈ G ∧ F]

≥ 1
T
· ϵ(n)

2
·
(

1−
n

∑
i=1

Pr[x′i ̸= xi | x ∈ G ∧ F]

)

≥ ϵ(n)2

2n
· ϵ(n)

2
·
(

1− n · 1
2n

)
=

ϵ(n)3

8n
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Exercises

Exercise 2.1. If µ(·) and ν(·) are negligible functions then show that
µ(·) · ν(·) is a negligible function.

Exercise 2.2. If µ(·) is a negligible function and f (·) is a function polyno-
mial in its input then show that µ( f (·))4 are negligible functions. 4 Assume that µ and f are such that

µ( f (·)) takes inputs from Z+ and
outputs values in [0, 1].Exercise 2.3. Prove that the existence of one-way functions implies P ̸=

NP.

Exercise 2.4. Prove that there is no one-way function f : {0, 1}n →
{0, 1}⌊log2 n⌋.

Exercise 2.5. Let f : {0, 1}n → {0, 1}n be any one-way function then is

f ′(x)
de f
= f (x)⊕ x necessarily one-way?

Exercise 2.6. Prove or disprove: If f : {0, 1}n → {0, 1}n is a one-way
function, then g : {0, 1}n → {0, 1}n−log n is a one-way function, where
g(x) outputs the n− log n higher order bits of f (x).

Exercise 2.7. Explain why the proof of Theorem 2.1 fails if the attacker A
in Figure 2.2 sets i = 1 and not i $← {1, 2, · · · , q}.

Exercise 2.8. Given a (strong) one-way function construct a weak one-way
function that is not a (strong) one-way function.

Exercise 2.9. Let f : {0, 1}n → {0, 1}n be a weak one-way permutation
(a weak one way function that is a bijection). More formally, f is a PPT
computable one-to-one function such that ∃ a constant c > 0 such that ∀
non-uniform PPT machine A and ∀ sufficiently large n we have that:

Pr
x,A

[A( f (x)) ̸∈ f−1( f (x))] >
1
nc

Show that g(x) = f T(x) is not a strong one way permutation. Here f T

denotes the T times self composition of f and T is a polynomial in n.
Interesting follow up reading if interested: With some tweaks the func-

tion above can be made a strong one-way permutation using explicit con-
structions of expander graphs. See Section 2.6 in http://www.wisdom.

weizmann.ac.il/~oded/PSBookFrag/part2N.ps

http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/part2N.ps
http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/part2N.ps


3
Pseudorandomness

In this chapter, our objective is to transform a small amount of en-
tropy into a distribution that closely resembles randomness. The idea
is to start with a small amount of entropy, known as the “seed", and
use a deterministic process to generate a new distribution that ap-
pears “indistinguishable" from random. However, before we dive into
the specifics of how to achieve this, we need to clarify what we mean
by “indistinguishable."

3.1 Statistical Indistinguishability

The first definition of indistinguishability we will focus on is that
of statistical indistinguishability. It turns out that defining what it
means for two distributions to be indistinguishable by an adversary
is tricky. In particular, it is tricky to define indistinguishability for
a single pair of distributions because the length of the output of a
random variable is a constant. Therefore, in order for our definition
to make sense, we will work with collections of distributions, called
ensembles

Definition 3.1 (Ensemble of Probability Distributions). An ensemble
of probability distributions is a sequence of random variables {Xn}n∈N.

In this definition, n is a parameter. Sometimes, we write {Xn}n or
even simply Xn, when it is clear from context that we are talking
about an ensemble.
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Definition 3.2 (Statistical Indistinguishability). Two ensembles of
probability distributions {Xn}n and {Yn}n are said to be statistically
indistinguishable if for all adversaries A, the quantities

p(n) := Pr[A(Xn) = 1] = ∑
x

Pr[Xn = x]Pr[A(1n, x) = 1]

and

q(n) := Pr[A(Yn) = 1] = ∑
y

Pr[Yn = y]Pr[A(1n, y) = 1]

differ by a negligible amount. In particular, the ensembles are said to be
statistically indistinguishable if

∆A(n) = |p(n)− q(n)| = |Pr[A(Xn) = 1]− Pr[A(Yn) = 1]|

is negligible in n. This equivalence is denoted by

{Xn}n ≈S {Yn}n

Note that our attacker in this scenario is not computationally bounded,
as is usual1. We also do not require the ensemble to be efficiently 1 Statistical indistinguishability is a very

strong requirement, and it makes use
of a very powerful adversary, so it will
serve mostly as an illustrative example.

samplable.
This definition is closely related to the concept of the statistical

distance between two probability distributions.

Definition 3.3 (Statistical Distance). The statistical distance between
two distributions X and Y is defined as

SD(X, Y) =
1
2 ∑

v∈S
|Pr[Xn = v]− Pr[Yn = v]|

where S = Support(Xn) ∪ Support(Yn).

In fact, we can show that ∆A(n) ≤ SD(Xn, Yn).

Lemma 3.1 (Relationship between SD and ∆A). For any adversary A,

∆A(n) ≤ SD(Xn, Yn)

Proof. Let Ω be the sample space for Xn and Yn.
Let T = {v ∈ Ω|Pr[v← Xn] > Pr[v← Yn]}.
First, we will prove that SD(Xn, Yn) = ∑

v∈Ω
|Pr[v ← Xn]− Pr[v ←

Yn]|.
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∑
v∈Ω

Pr[v← Xn] = ∑
v∈Ω

Pr[v← Yn] = 1

∑
v∈T

Pr[v← Xn] + ∑
v∈Ω\T

Pr[v← Xn] = ∑
v∈T

Pr[v← Yn] + ∑
v∈Ω\T

Pr[v← Yn]

∑
v∈T

(Pr[v← Xn]− Pr[v← Yn]) = ∑
v∈Ω\T

(Pr[v← Yn]− Pr[v← Xn])

∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]| = ∑

v∈Ω\T
|Pr[v← Yn]− Pr[v← Xn]|

∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]| = ∑

v∈Ω\T
|Pr[v← Xn]− Pr[v← Yn]|

∑
v∈Ω
|Pr[v← Xn]− Pr[v← Yn]| = ∑

v∈T
|Pr[v← Xn]− Pr[v← Yn]|

+ ∑
v∈Ω\T

|Pr[v← Xn]− Pr[v← Yn]|

2SD(Xn, Yn) = 2 · ∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]|

SD(Xn, Yn) = ∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]|

Now we will show the main result of the lemma.

∆A(n) = |Pr[A(Xn) = 1]− Pr[A(Yn) = 1]|
= | ∑

v∈Ω
(Pr[A(v) = 1] · Pr[v← Xn])− (Pr[A(v) = 1] · Pr[v← Yn])|

= | ∑
v∈Ω

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])|

= | ∑
v∈T

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])

+ ∑
v∈Ω\T

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])|

= ∑
v∈T

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])

+ ∑
v∈Ω\T

Pr[A(v) = 1] · (Pr[v← Xn])− Pr[v← Yn])

= ∑
v∈T

Pr[A(v) = 1] · |Pr[v← Xn])− Pr[v← Yn]|

+ ∑
v∈Ω\T

Pr[A(v) = 1] · |Pr[v← Xn])− Pr[v← Yn]|

≤ ∑
v∈T
|Pr[v← Xn]− Pr[v← Yn]|

= SD(Xn, Yn)
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3.2 Computational Indistinguishability

We now turn to a more reasonable definition of indistinguishability.
In particular, this definition imposes the usual computational limits
on the adversary A. It also requires that the ensembles of distribu-
tions in question be efficiently samplable. Besides those changes,
however, the definition of computational indistinguishability is quite
similar to that of statistical indistinguishability.

Definition 3.4 (Computational Indistinguishability). Two ensembles of
probability distributions {Xn}n and {Yn}n (which are samplable in time
polynomial in n) are said to be computationally indistinguishable if for
all (non-uniform) PPT adversaries A, the quantities

p(n) := Pr[A(1n, Xn) = 1] = ∑
x

Pr[Xn = x]Pr[A(1n, x) = 1]

and

q(n) := Pr[A(1n, Yn) = 1] = ∑
y

Pr[Yn = y]Pr[A(1n, y) = 1]

differ by a negligible amount; i.e. |p(n) − q(n)| is negligible in n. This
equivalence is denoted by

{Xn}n ≈C {Yn}n

However, since this is the main form of indistinguishability that we are
concerned with, we will simply write

{Xn}n ≈ {Yn}n

We now prove some properties of computationally indistinguishable
ensembles that will be useful later on.

Lemma 3.2 (Sunglass Lemma). If {Xn}n ≈ {Yn}n and P is a PPT ma-
chine, then

{P(Xn)}n ≈ {P(Yn)}n

Proof. Consider an adversary A that can distinguish {P(Xn)}n from
{P(Yn)}n with non-negligible probability. Then the adversary A ◦ P
can distinguish {Xn}n from {Yn}n with the same non-negligible
probability. Since P and A are both PPT machines, the composition is
also a PPT machine. This proves the contrapositive of the lemma.

The name of the lemma comes from the idea that if two objects are
indistinguishable without putting on sunglasses, then they should
remain indistinguishable after putting on sunglasses.
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Lemma 3.3 (Multicopy Lemma). For a polynomial t : Z+ → Z+ let the
t-product of {Zn}n be

{Z(1)
n , Z(2)

n , . . . , Z(t(n))
n }n

where the Z(i)
n s are independent copies of Zn. If

{Xn}n ≈ {Yn}n

then
{X(1)

n , . . . , X(t)
n }n ≈ {Y(1)

n , . . . , Y(t)
n }n

as well.

Intuitively, if you can’t tell apart a red ball and a blue ball, then you
can’t tell apart multiple copies of the red and blue balls.

Proof. We proceed by what is known as a hybrid argument. Consider
the set of tuple random variables

H(i,t)
n = (Y(1)

n , . . . , Y(i)
n , X(i+1)

n , X(i+2)
n , . . . , X(t)

n )

for integers 0 ≤ i ≤ t. For instance, when i = 0:

H(0,t)
n = (X(1)

n , X(2)
n , . . . , X(t)

n ) = Xn

Similarly, when i = t:

H(t,t)
n = (Y(1)

n , Y(2)
n , . . . , Y(t)

n ) = Yn

Assume, for the sake of contradiction, that there is a PPT adver-
sary A that can distinguish between {H(0,t)

n }n and {H(t,t)
n }n with

non-negligible probability difference ε(n). Suppose that A returns
1 with probability Pi when it runs on samples from H(i,t)

n . That is,
Pi = Pr[A(H(i,t)

n = 1)] By definition, |P0 − Pt| ≥ ε(n).
Using the common add-one-subtract-one trick, we can find that

|P0 − Pt| = |P0 − P1 + P1 − P2 + ... + Pt−1 − Pt|
= |(P0 − P1) + (P1 − P2) + ... + (Pt−1 − Pt)|
≤ |P0 − P1|+ |P1 − P2|+ ... + |Pt−1 − Pt|

Since |P0 − Pt| ≥ ε(n), it follows that |P0 − P1| + |P1 − P2| + ... +
|Pt−1 − Pt| ≥ ε(n). Then there must exist some index k for which

|Pk − Pk+1| ≥
ε(n)

t

Note that ε(n)
t is non-negligible because t is polynomial. This implies

that {H(k,t)
n }n and {H(k+1,t)

n }n are distinguishable.
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Using this information, we can construct an adversary B that can
distinguish Xn from Yn. Given an input Zn, which is either Xn or Yn,
B works as follows:

B(Zn) = A(X1, ..., Xk−1, Z, Yk+1, ..., Yt)

By the argument above, for some value2 of k, this computation gives 2 B is non-uniform, so it can “know"
which value of k it should use.|Pr[B(Xn) = 1]− Pr[B(Yn) = 1]| ≥ ε(n)

t .
This is a contradiction.
Intuitively, the idea behind proofs by hybrid argument is to create

a chain of polynomially many hybrids such that the hybrids are
pairwise indistinguishable at each step. Visually:

H(0,t)
n ≈ H(1,t)

n ≈ H(2,t)
n ≈ ... ≈ H(t−1,t)

n ≈ H(t,t)
n

This implies that
H(0,t)

n ≈ H(t,t)
n

which is the same thing as saying that

Xn ≈ Yn

3.3 Pseudorandom Generators

Now, we can define pseudorandom generators, which intuitively
generates a polynomial number of bits that are computationally
indistinguishable from being uniformly random:

Definition 3.5. A function G : {0, 1}n → {0, 1}n+m with m = poly(n) is
called a pseudorandom generator if

• G is computable in polynomial time.

• Un+m ≈ G(Un), where Uk denotes the uniform distribution on {0, 1}k.

3.3.1 PRG Extension

In this section we show that any pseudorandom generator that pro-
duces one bit of randomness can be extended to create a polynomial
number of bits of randomness.

Construction 3.1. Given a PRG G : {0, 1}n → {0, 1}n+1, we construct a
new PRG F : {0, 1}n → {0, 1}n+l as follows (l is polynomial in n).

(a) Input: S0
$←− {0, 1}n.

(b) ∀i ∈ [l] = {1, 2, · · · , l}, (σi, Si) := G(Si−1), where σi ∈ {0, 1}, Si ∈
{0, 1}n .

(c) Output: σ1σ2 · · · σlSl .
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Theorem 3.1. The function F constructed above is a PRG.

Proof. We prove this by hybrid argument. Define the hybrid Hi as
follows.

(a) Input: S0
$←− {0, 1}n.

(b) σ1, σ2, · · · , σi
$←− {0, 1}, Si ← S0.

∀j ∈ {i + 1, i + 2, · · · , l}, (σj, Sj) := G(Sj−1), where σj ∈ {0, 1}, Sj ∈
{0, 1}n .

(c) Output: σ1σ2 · · · σlSl .

Note that H0 ≡ F, and Hl ≡ Un+l .
Assume for the sake of contradiction that there exits a non-uniform

PPT adversary A that can distinguish H0 form Hl . Define ϵi :=
Pr[A(1n, Hi) = 1] for i = 0, 1, · · · , l. Then there exists a non-negligible
function v(n) such that |ϵ0 − ϵl | ≥ v(n). Since

|ϵ0 − ϵ1|+ |ϵ1 − ϵ2|+ · · ·+ |ϵl−1 − ϵl | ≥ |ϵ0 − ϵl | ≥ v(n),

there exists k ∈ {0, 1, · · · , l − 1} such that

|ϵk − ϵk+1| ≥
v(n)

l
.

l is polynomial in n, hence v(n)
l is also a non-negligible function.

That is to say, A can distinguish Hk from Hk+1. Then we use A to
construct an adversary B that can distinguish Un+1 from G(Un)

(which leads to a contradiction): On input T ∈ {0, 1}n+1 (T could be
either from Un+1 or G(Un)), B proceeds as follows:

• σ1, σ2, · · · , σk
$←− {0, 1}, (σk+1, Sk+1)← T.

• ∀j ∈ {k + 2, k + 3, · · · , l}, (σj, Sj) := G(Sj−1), where σj ∈ {0, 1}, Sj ∈
{0, 1}n .

• Output: A(1n, σ1σ2 · · · σlSl).

First, since A and G are both PPT computable, B is also PPT com-
putable.

Second, if T ← G(Un), then σ1σ2 · · · σlSl is the output of Hk; if

T $← Un+1, then σ1σ2 · · · σlSl is the output of Hk+1. Hence∣∣Pr[B(1n, G(Un)) = 1]− Pr[B(1n, Un+1) = 1]
∣∣

=
∣∣Pr[A(1n, Hk) = 1]− Pr[A(1n, Hk+1) = 1]

∣∣
=|ϵk − ϵk+1| ≥

v(n)
l

.
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3.3.2 PRG from OWP (One-Way Permutations)

In this section we show how to construct pseudorandom generators
under the assumption that one-way permutations exist.

Construction 3.2. Let f : {0, 1}n → {0, 1}n be a OWP. We construct G :
{0, 1}2n → {0, 1}2n+1 as

G(x, r) = f (x)||r||B(x, r),

where x, r ∈ {0, 1}n, and B(x, r) is a hard concentrate bit for the function
g(x, r) = f (x)||r.

Remark 3.1. The hard concentrate bit B(x, r) always exists. Recall Theo-
rem 2.3,

B(x, r) =

(
n

∑
i=1

xiri

)
mod 2

is a hard concentrate bit.

Theorem 3.2. The G constructed above is a PRG.

Proof. Assume for the sake of contradiction that G is not PRG. We
construct three ensembles of probability distributions:

H0 := G(U2n) = f (x)||r||B(x, r), where x, r $←− {0, 1}n;

H1 := f (x)||r||σ, where x, r $←− {0, 1}n, σ
$←− {0, 1};

H2 := U2n+1.

Since G is not PRG, there exists a non-uniform PPT adversary
A that can distinguish H0 from H2. Since f is a permutation, H1 is
uniformly distributed in {0, 1}2n+1, i.e., H1 ≡ H2. Therefore, A can
distinguish H0 from H1, that is, there exists a non-negligible function
v(n) satisfying∣∣Pr[A(H0) = 1]− Pr[A(H1) = 1]

∣∣ ≥ v(n).

Next we will construct an adversary B that “breaks” the hard con-
centrate bit (which leads to a contradiction). Define a new ensemble
of probability distribution

H′1 = f (x)||r||(1− B(x, r)), where x, r $←− {0, 1}n.

Then we have

Pr[A(H1) = 1] =Pr[σ = B(x, r)]Pr[A(H0) = 1] + Pr[σ = 1− B(x, r)]Pr[A(H′1) = 1]

=
1
2

Pr[A(H0) = 1] +
1
2

Pr[A(H′1) = 1].
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Hence

Pr[A(H1) = 1]− Pr[A(H0) = 1] =
1
2

Pr[A(H′1) = 1]− 1
2

Pr[A(H0) = 1],

1
2

∣∣Pr[A(H0) = 1]− Pr[A(H′1) = 1]
∣∣ = |Pr[A(H1) = 1]− Pr[A(H0) = 1]| ≥ v(n),∣∣Pr[A(H0) = 1]− Pr[A(H′1) = 1]
∣∣ ≥ 2v(n).

Without loss of generality, we assume that

Pr[A(H0) = 1]− Pr[A(H′1) = 1] ≥ 2v(n).

Then we construct B as follows:

B( f (x)||r) :=

σ, if A( f (x)||r||σ) = 1

1− σ, if A( f (x)||r||σ) = 0
,

where σ
$←− {0, 1}. Then we have

Pr[B( f (x)||r) = B(x, r)]

=Pr[σ = B(x, r)]Pr[A( f (x)||r||σ) = 1|σ = B(x, r)]+

Pr[σ = 1− B(x, r)]Pr[A( f (x)||r||σ) = 0|σ = 1− B(x, r)]+

=
1
2
(

Pr[A( f (x)||r||B(x, r)) = 1] + 1− Pr[A( f (x)||r||1− B(x, r)) = 1]
)

=
1
2
+

1
2
(

Pr[A(H0) = 1]− Pr[A(H′1) = 1]
)

≥1
2
+ v(n).

This contradicts the fact that B must be a hardness concentrate bit.

3.4 Pseudorandom Functions

In this section, we first define pseudorandom functions, and then
show how to construct a pseudorandom function from a pseudoran-
dom generator.

Considering the set of all functions f : {0, 1}n → {0, 1}n, there
are (2n)2n

of them. To describe a random function in this set we
need n · 2n bits. Intuitively, a pseudorandom function is one that
cannot be distinguished from a random one, but needs much fewer
bits (e.g., polynomial in n) to be described. Note that we restrict the
distinguisher to only being allowed to ask the function poly(n) times
and decide whether it is random or pseudorandom.

3.4.1 Definitions

Definition 3.6 (Function Ensemble). A function ensemble is a sequence
of random variables F1, F2, · · · , Fn, · · · denoted as {Fn}n∈N such that Fn

assumes values in the set of functions mapping n-bit input to n-bit output.
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Although we will only focus on the functions where the input and
output bit-length is the same, the definition can be generalized to
functions mapping n-bit inputs to m-bit outputs as {Fn,m}n,m∈N.

Definition 3.7 (Random Function Ensemble). We denote a random func-
tion ensemble by {Rn}n∈N.

A sampling of the random variable Rn requires n · 2n bits to describe.

Definition 3.8 (Efficiently Computable Function Ensemble). A func-
tion ensemble is called efficiently computable if

(a) Succinct: ∃ a PPT algorithm I and a mapping ϕ from strings to func-
tions such that ϕ(I(1n)) and Fn are identically distributed. Note that we
can view the output of I(·) as the description of the function.

(b) Efficient: ∃ a poly-time machine V such that V(i, x) = fi(x) for every
x ∈ {0, 1}n, where i is in the range of I(1n), and fi = ϕ(i).

Note that the succinctness condition implies that a sample from
Fn can be equivalently generated by first sampling a random string k
from {0, 1}n, and then outputting fk. Here k is often called the “key”
of the function3. More generally, the key can be a string of length m 3 An efficiently computable function re-

quires only n bits (the key) to describe,
while a random function requires n.2n

bits.

where n is polynomial in m; here I uses a random tape of length m
and outputs n bits.

Definition 3.9 (Pseudorandom Function Ensemble). A function ensem-
ble F = {Fn}n∈N is pseudorandom if for every non-uniform PPT oracle
adversary A, there exists a negligible function ϵ(n) such that∣∣Pr[AFn(1n) = 1]− Pr[ARn(1n) = 1]

∣∣ ≤ ϵ(n).

Here by saying “oracle” it means that A has “oracle access” to a (fixed)
function (in our definition, the function is a sampling of Fn or Rn), and each
call to that function costs 1 unit of time.

Note that we will only consider efficiently computable pseudo-
random ensembles in the following. Therefore, each function in Fn is
defined by a PRF key k ∈ {0, 1}n.

3.4.2 Construction of PRF from PRG

Construction 3.3. Given a PRG G : {0, 1}n → {0, 1}2n, let G0(x)
be the first n bits of G(x), G1(x) be the last n bits of G(x). We construct
F(K) : {0, 1}n → {0, 1}n as follows.

F(K)
n (x1x2 · · · xn) := Gxn(Gxn−1(· · · (Gx1(K)) · · · )),

where K ∈ {0, 1}n is the key to the pseudorandom function. In Figure 3.1,
i = K.
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The construction can be viewed as a binary tree of depth n, as shown
in Figure 3.14. 4 Algorithmically, F(K)

n (x) is computed
as:

1. Set y← K ∈ {0, 1}n.

2. For i = 1 . . . n: update y← Gxi (y).

3. Output y.

𝑖𝑖
𝐺𝐺0 𝐺𝐺1

𝐺𝐺0 𝐺𝐺1

𝑥𝑥1 = 0

𝑥𝑥2 = 1

Output

(random 𝑛𝑛-bit string)

Figure 3.1: View the construction as a
binary tree

Theorem 3.3. The function ensemble {Fn}n∈N constructed above is pseu-
dorandom.

Proof. Assume for the sake of contradiction that {Fn}n∈N is not a
PRF. Then there exists a non-uniform PPT oracle adversary A that
can distinguish {Fn}n∈N from {Rn}n∈N. Below, via a hybrid argu-
ment, we prove that this contradicts the fact that G is a PRG; we will
construct an adversary B that can distinguish between a sample from
U2n and G(Un). We will prove for a fixed n, and the proof can be
easily extended to all n ∈N.

Hybrids. Consider the sequence of hybrids Hi for i ∈ {0, 1, · · · , n}
where the hybrid i is defined as follows:

H(Ki)
i (x1x2 . . . xn) := Gxn(Gxn−1(· · · (Gxi+1(Ki(x1 . . . xi−1xi))) · · · )),

where Ki is a random function from {0, 1}i to {0, 1}n. Intuitively,
hybrid Hi corresponds to a binary tree of depth n where the nodes of
levels 0 to i correspond to random values and the nodes at levels i + 1
to n correspond to pseudorandom values. By inspection, observe that
hybrids H0 and Hn are identical to a pseudorandom function and a
random function, respectively. Note that we cannot yet reduce the
computational indistinguishability of Hi and Hi+1 to security of the
PRG G because the adversary can make multiple oracle queries at
different inputs.

Sub-hybrids. We show that Hi and Hi+1 are indistinguishable
by considering a sequence of sub-hybrids Hi,j for j ∈ {0, . . . q},
where q is the number of oracle queries made by A5. Intuitively, 5 Observe that A can make at most

polynomial in n oracle queries. Looking
ahead, our outer adversary B can either
take q as the max queries allowed to
A, or guess the number, and double
the guess each time if it’s an under-
estimate.

with each sub-hybrid Hi,j, at level i + 1 in the tree, we will fix the
first j oracle queries made by A to be output of random functions
and the rest to be output of PRG. Let Ri : {0, 1}i → {0, 1}n and
Si : {0, 1}i+1 → {0, 1}n be two random functions. We define sub-
hybrid H(Ri ,Si)

i,j (x1x2 . . . xn) algorithmically as follows:

1. Initialize a list L ← {} to store the i-bit prefixes of the queries
made by A.

2. If |L| < j or (x1 . . . xi) ∈ L6: 6 Captures the first j queries or any
query with repeated i-bit prefix to a
previous query.(a) Set y← Si(x1 . . . xixi+1).

(b) Append (x1 . . . xi) to L.
(c) For a ∈ i + 2 . . . n: update y← Gxa(y).

3. Else:

(a) Set y← Ri(x1 . . . xi).



42 a course in theory of cryptography

(b) For a ∈ i + 1 . . . n: update y← Gxa(y).

4. Output y.

Note that Hi,0 is the same as Hi and Hi,q is the same as Hi+1. Since
we assumed that A can distinguish between H0 and Hn, by trian-
gle inequality, there exists a i∗, j∗ such that it can distinguish Hi∗ ,j∗

and Hi∗ ,j∗+1. We now focus on these two sub-hybrids7. Consider the 7 Looking ahead, the outer adversary
B can guess i∗, j∗; total choices are
bounded by polynomial in n. To sim-
plify the proof, we will assume that B
already knows this i∗, j∗.

j∗ + 1-th query made by A (i.e. the first query where |L| = j). Ob-
serve that this query cannot have the same i-bit prefix as any of the
previous queries. Because if it did, then the output distribution of the
two hybrids would be identical, and that contradicts our assumption
about A’s distinguishing power. Therefore, the j∗ + 1-th query has
to be a new query, and this query is the only place where the two
hybrids differ.

Outer adversary B. Now we are ready to construct our outer adver-
sary B that can distinguish between U2n and G(Un). BA,i∗ ,j∗(1n, z),
where z ∈ {0, 1}2n (z could be either from U2n or G(Un)) and we
assume the knowledge of i∗, j∗8, operates as follows: 8 As mentioned before, it can be

guessed with slight loss in distin-
guishing advantage.1. Parse z as z0||z1, where z0, z1 ∈ {0, 1}n.

2. For all the oracle queries from A except the j∗ + 1-th query, re-
spond as Hi∗ ,j∗

9. 9 The outer adversary B runs a random
function in polynomial time in n via
lazy sampling. It generates a random
output on a new input and caches
responses to previous inputs.

3. For the j∗ + 1-th query (x1 . . . xn), do the following:

(a) Set y← zxi∗+1 .

(b) For a ∈ i∗ + 2 . . . n: update y← Gxa(y).

(c) Respond with y.

4. Output whatever A outputs.

We assumed that A can distinguish between Hi∗ ,j∗ and Hi∗ ,j∗+1, so
by contrapositive of the Sunglass Lemma, B can distinguish between
U2n and G(Un). This contradicts that G is a PRG.

3.5 PRFs from DDH: Naor-Reingold PRF

We will now describe a PRF function family Fn : K × {0, 1}n → Gn

where DDH is assumed to be hard for {Gn} and K is the key space.
The key for the PRF Fn will be K = (h, u1, . . . un), where u, u0 . . . un

are sampled uniformly from |Gn|, g is the generator of Gn and h =

gu. Compared to the previous construction (Theorem 3.3), there are
two differences to note already: the key is polynomially longer and
the output space is Gn instead of {0, 1}n.
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Fn(K, x) = h∏i u
xi
i

Next, we will prove that the function Fn is a pseudo-random func-
tion or that {Fn} is a pseudo-random function ensemble.10 10 Here, we require that adversary

distinguish the function Fn from a
random function from {0, 1}n to Gn.
Note that the output range of the
function is Gn. Moreover, note that
the distribution of random group
elements in Gn might actually be far
from uniformly random strings.

Lemma 3.4. Assuming the DDH Assumption (see Definition 1.7) for {Gn}
is hard, we have that {Fn} is a pseudorandom function ensemble.

Proof. The proof of this lemma is similar to the proof of Theorem 3.3
except for some subtle differences that arise from number theory11.

11 At a high-level, we can no longer
fix nodes in the same level of the
tree arbitrarily. Fixing one node has
implications for how other nodes will
be changed. This is because we have a
fixed basis in the key.

Let Rn be random function from {0, 1}n → Gn. Then we want to
prove that for all non-uniform PPT adversaries A we have that:

µ(n) =
∣∣∣Pr[AFn(1n) = 1]− Pr[ARn(1n) = 1]

∣∣∣
is a negligible function.

Hybrids. For the sake of contradiction, we assume that the function
Fn is not pseudorandom. Next, towards a contradiction, we consider
a sequence of hybrid functions H0

n . . . Hn
n . For j ∈ {0, . . . , n}, let

Sj
n : {0, 1}j → {0, 1, . . . , |Gn| − 1}, then hybrid H j

n is defined as12: 12 Algorithmically, H j
n((u, uj+1 . . . un), x)

is computed as:

1. Set y← Sj
n(x1 . . . xj).

2. For i = j + 1 . . . n: update y← y · uxi
i .

3. Output gy.

H j
n((u, uj+1 . . . un), x) =

(
gSj

n(x1 ...xj)
)∏n

i=j+1 u
xi
i

where S0
n(·) is the constant function with output u. Observe that

H0
n is the same as the function Fn and Hn

n is the same as the func-
tion Rn

13. Thus, by a hybrid argument and triangle inequality, we 13 A uniform group element is equiv-
alently sampled by first sampling an
exponent in the order of the group.

conclude that there exists j∗ ∈ {0, . . . n− 1}, such that∣∣∣∣Pr[AH j∗
n (1n) = 1]− Pr[AH j∗+1

n (1n) = 1]
∣∣∣∣

is a non-negligible function. Now all we are left to show is that this
implies an attacker that refutes the DDH assumption.

Sub-hybrids. The proof of this claim follows by a sequence of q + 1
sub-hybrids H j,0

n , . . . , H j,q
n , where q is the (polynomially bounded by

n) running time of A. For the simplicity of exposition, we abuse the
notation and denote q(n) by q. Let Cj

n : {0, 1}j → {0, . . . , |Gn| − 1}
and Dj

n : {0, 1}j+1 → {0, . . . , |Gn| − 1} be two random functions, and
C0

n(·) = u. We define sub-hybrid H j,k
n
(
(u, uj+1 . . . un), (x1 . . . xn)

)
for

k ∈ {0, . . . , q} as follows:

1. Initialize a list L ← {} to store the j-bit prefixes of the queries
made by A.

2. If |L| < k or (x1 · · · xj) ∈ L:

(a) Set y← Dj
n(x1 . . . xj+1).

(b) Append (x1 . . . xj) to L.
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(c) For i = j + 2 . . . n: update y← y · uxi
i .

3. Else

(a) Set y← Cj
n(x1 . . . xj).

(b) For i = j + 1 . . . n: update y← y · uxi
i .

4. Output gy.

It is easy to see that H j,0
n is the same as H j

n and H j,q
n is the same as

H j+1
n . Again, we use hybrid argument to conclude that there exists

j∗, k∗ such that A can distinguish between H j∗ ,k∗
n and H j∗ ,k∗+1

n with
non-negligible probability. We now focus on these two sub-hybrids.
Consider the k∗ + 1-th oracle query made by A. Following an identi-
cal argument we used in the proof of Theorem 3.3, this query cannot
be a repeat of a query made before, and this query is the only place
where the two sub-hybrids differ.

Outer adversary B. The construction of the outer adversary B is a
bit different from the proof of Theorem 3.3. Intuitively, unlike The-
orem 3.3, outer adversary cannot simply replace the k∗ + 1-th query
with the DDH challenge in isolation from the rest of the queries
made by A. This is because the pseudorandom nodes in the tree are
tied together by the DDH relation, and are not independent, i.e., all
pseudorandom sibling nodes on the same level of the tree are set
apart by a common exponent.
B gets as challenge either a DDH tuple (g, A = ga, B = gb, C = gab)

or a uniform tuple (g, A = ga, B = gb, C = gc) where a, b, c are
uniform in {0, . . . , |G| − 1}. We construct BA,j∗ ,k∗(1n, (g, A, B, C)

)
as

follows:

1. Sample u, uj∗+1, . . . un uniformly from {0, . . . , |Gn| − 1}.

2. For first k∗ queries from A, respond as H j∗ ,k∗
n ((u, uj∗+1, . . . un), ·).

3. For the k∗ + 1-th query (x1 . . . xn), do the following:

(a) Set y← A if xj∗+1 = 0 and y← C if xj∗+1 = 1.
(b) For i = j∗ + 2 . . . n: update y← y · uxi

i .
(c) Output gy.

4. For the rest of the queries (x1 . . . xn), do the following:

(a) Set y← Cj
n(x1 . . . xj).

(b) For i = j∗ + 2 . . . n: update y← y · uxi
i .

(c) If xj∗+1 = 0, output gy, else output14 By. 14 Recall that B = gb, so By = gy·b =

gy·bx
j∗+1 . Therefore, the DDH relation

is properly set for all pseudorandom
nodes.

5. Output whatever A outputs.

By the construction of B, if (g, A, B, C) is a DDH tuple, then the
distribution of oracle responses seen by A are exactly the same as the
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responses seen in the hybrid H j∗ ,k∗
n . Otherwise, they are the same as

hybrid H j∗ ,k∗+1
n . We assumed that A can distinguish between H j∗ ,k∗

n

and H j∗ ,k∗+1
n , therefore B can distinguish between a DDH tuple and a

uniform tuple. This contradicts our assumption that DDH is hard.
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Exercises

Exercise 3.1. Prove or disprove: If f is a one-way function, then the follow-
ing function B : {0, 1}∗ → {0, 1} is a hardconcentrate predicate for f . The
function B(x) outputs the inner product modulo 2 of the first ⌊|x|/2⌋ bits
of x and the last ⌊|x|/2⌋ bits of x.

Exercise 3.2. Let ϕ(n) denote the first n digits of π = 3.141592653589 . . .
after the decimal in binary (π in its binary notation looks like 11.00100100001111110110101010001000100001 . . .).

Prove the following: if one-way functions exist, then there exists a one-
way function f such that the function B : {0, 1}∗ → {0, 1} is not a hard
concentrate bit of f . The function B(x) outputs ⟨x, ϕ(|x|)⟩, where

⟨a, b⟩ :=
n

∑
i=1

aibi mod 2

for the bit-representation of a = a1a2 · · · an and b = b1b2 · · · bn.

Exercise 3.3. If f : {0, 1}n × {0, 1}n → {0, 1}n is PRF, then in which of
the following cases is g : {0, 1}n × {0, 1}n → {0, 1}n also a PRF?

1. g(K, x) = f (K, f (K, x))

2. g(K, x) = f (x, f (K, x))

3. g(K, x) = f (K, f (x, K))

Exercise 3.4 (Puncturable PRFs.). Puncturable PRFs are PRFs for which
a key can be given out such that, it allows evaluation of the PRF on all
inputs, except for one designated input.

A puncturable pseudo-random function F is given by a triple of efficient
algorithms (KeyF,PunctureF, and EvalF), satisfying the following condi-
tions:

- Functionality preserved under puncturing: For every x∗, x ∈ {0, 1}n

such that x∗ ̸= x, we have that:

Pr[EvalF(K, x) = EvalF(Kx∗ , x) : K ← KeyF(1
n), Kx∗ = PunctureF(K, x∗)] = 1

- Pseudorandom at the punctured point: For every x∗ ∈ {0, 1}n we
have that for every polysize adversary A we have that:

|Pr[A(Kx∗ ,EvalF(K, x∗)) = 1]−Pr[A(Kx∗ ,EvalF(K, Un)) = 1]| = negl(n)(n)

where K ← KeyF(1n) and KS = PunctureF(K, x∗). Un denotes the
uniform distribution over n bits.

Prove that: If one-way functions exist, then there exists a puncturable
PRF family that maps n bits to n bits.

Hint: The GGM tree-based construction of PRFs from a length doubling
pseudorandom generator (discussed in class) can be adapted to construct a
puncturable PRF. Also note that K and Kx∗ need not be the same length.
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Private-Key Cryptography

4.1 Private-Key Encryption

The first primitive that we will study in private-key cryptography
is that of private-key encryption. When talking about private-key
encryption, we will be working in a setting where two players, Alice
and Bob, are attempting to communicate with each other.

Alice and Bob want to communicate with each other. For simplic-
ity, let’s assume that only Alice wants to send a message to Bob. The
crucial property that they want is that no eavesdropper attempting to
listen to the conversation should be able to decipher the contents of
the message being sent.

To achieve this, the two employ the following communication
protocol:

1. A priori, Alice and Bob generate a key k and distribute it in such a
way that only the two of them know what k is.

2. Using k, Alice can encrypt her message m, to turn it into a cipher-
text c, which she sends over to Bob.

3. Upon receiving c, Bob can decrypt its contents and recover m by
using k.

This meta-scheme implies a couple of requirements. First of all, we
want Bob to indeed be able to recover m when decrypting c with k.
It is no use having a communication scheme where the message re-
ceived is not the one sent. We will call this requirement correctness.
The second requirement, which we have already mentioned, is confi-
dentiality. To reiterate, confidentiality means that no eavesdropper that
manages to get a hold of c should be able to learn anything about c
that they do not already know (assuming they have no knowledge
of the key k). In addition to these two fundamental requirements, we
might also impose that our private-key encryption scheme guaran-
tees integrity and authenticity. By integrity, we mean that Bob should
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be able to detect that the message c has been tampered with prior to
him receiving it. By authenticity, we mean that Bob should be able to
verify that the message he received was indeed sent by Alice, and not
some adversary interfering with the conversation.

Now that we have some intuitive understanding of what we are
trying to achieve, let us attempt to ground it in mathematics.

Definition 4.1 (Private-Key Encryption Scheme). A private-key encryp-
tion scheme Π is a tuple Π = (Gen,Enc,Dec), where Gen,Enc, and Dec are
algorithms such that:

1. Gen(1n)→ k

2. Enc(k, m)→ c

3. Dec(k, c)→ m′

where n is a security parameter and k, c, m, m′ ∈ {0, 1}∗

Now, we will formalize the requirements of our cryptosystem. Our
first requirement is correctness, which is defined below:

Definition 4.2 ((Perfect) Correctness). We say that a private-key
encryption scheme Π = (Gen,Enc,Dec) is (perfectly) correct if
∀n, k ∈ Gen(1n), m ∈ {0, 1}∗,

Pr[Dec(k,Enc(k, m)) = m] = 1

That is, if c = Enc(k, m), then Bob is guaranteed to recover m by
running Dec(k, c). Note that for a fixed-length encryption scheme, we
require that m ∈ {0, 1}l(n).

Next, we will formalize what we mean by confidentiality. We will
often use the terms confidentiality and security interchangeably in the
context of private-key encryption schemes. Our first definition of
confidentiality is called IND Security, stated below:

Definition 4.3 (IND Security). ∀m0, ∀m1 s.t. |m0| = |m1| = l(n) and ∀
nu-PPT A we have

|Pr[A(1n,Enc(k, m0)) = 1 | k← Gen(1n)]−|Pr[A(1n,Enc(k, m1)) = 1 | k← Gen(1n)]| = neg(n)

Note that this is not a particularly good definition of security, in the
sense that the attacker is very limited in what they are allowed to do.
Specifically, all that A can do is take a look at the encryption of m0

and m1 and must decide which one is the plaintext. We need a more
usable and realistic definition of security. For this reason, we will
allow the attacker to have oracle access to the encryption function,
Enc(k, ·). In other words, A will be able to craft their own ciphertexts,
which it can then use to break the security of the encryption scheme.
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We shall dub this new definition of security Chosen Plaintext Attack
Security, or CPA Security for short.

In defining CPA Security, we will also introduce a new method for
defining private-key encryption schemes: the game-style definition.
The rationale behind this change in style is that probabilistic defi-
nitions, while precise and rigorous, are rather cumbersome to work
with, especially in the context of secure communication. Therefore,
we will adopt this new paradigm, which will make it easier to work
with and reason about private-key encryption schemes.

Priv-IND-CPAAΠ(n)

1 : b $←− {0, 1}

2 : k
$←− Gen(1n)

3 : (state, m0, m1)
$←− AEnc(k,·)(1n)

4 : c $←− Enc(k, mb)

5 : b′ $←− AEnc(k,·)(state, c)

6 : return b = b′ ∧ |m0| = |m1| = l(n)Definition 4.4 (CPA Security). A private-key encryption scheme
Π = (Gen,Enc,Dec) is CPA-secure if ∀ nu-PPT A

Adv
ind-cpa
Π,A (n) =

∣∣∣Pr[Priv-IND-CPAAΠ(n) = 1]− 1
2

∣∣∣
is a negligible function.

Observe that in this new game-style definition, we have a concrete
notion of the order in which each action is taken. One important
detail to note (and that is more evident in a game-style definition)
is that in our CPA Security definition, the key k is sampled before m0

and m1 are fixed. This is in contrast to IND Security, in which the
messages m0 and m1 are chosen before the key k is sampled1. 1 This is an important detail because

if m0 and m1 are chosen before k is
sampled, then giving oracle access to A
is not much help.

To further illustrate this point, consider the following scheme,
which is secure in IND but insecure in CPA:

• Gen(1n) :

1. k← Gen(1n)

2. x $←− {0, 1}n

3. k′ = (k, x)

• Enc′(k′, m)L :

1. if m = x, then output x

2. else, output Enc(k, m)||x

The final security notion we will define is CCA (chosen-ciphertext
attack) security. Here, the attacker is allowed oracle access to both the
encryption and the decryption functions. Let L be the working list
of queries that A has made to Dec(k, ·). Then Priv-IND-CCAAΠ(n) is
defined as:

Priv-IND-CCAAΠ(n)

1 : b $←− {0, 1}

2 : k
$←− Gen(1n)

3 : (state, m0, m1)
$←− AEnc(k,·),Dec(k,·)(1n)

4 : c $←− Enc(k, mb)

5 : b′ $←− AEnc(k,·),Dec(k,·)(state, c)

6 : return b = b′ ∧ |m0| = |m1| ∧ c /∈ LDefinition 4.5 (CCA Security). A private-key encryption scheme Π =

(Gen,Enc,Dec) is CCA-secure if ∀ nu-PPT A

Advind-cca
Π,A (n) =

∣∣∣Pr[Pri-IND-CCAAΠ(n) = 1]− 1
2

∣∣∣
is a negligible function.
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Π is a fixed-length encryption scheme for length l(n) if l(n) is
polynomial in n and |m0| = |m1| = l(n).

Theorem 4.1. If F is a PRF then the scheme Π = (Gen,Enc,Dec) given be-
low is a secure encryption scheme for length n.

• Gen(1n):

1. output k $←− {0, 1}n

• Enc(k, m):

1. r $←− {0, 1}n

2. output (r, Fk(r)⊕m)

• Dec(k, c = (c1, c2)):

1. output c2 ⊕ Fk(c1)

Proof. Assume there exists a nu-PPT A that is able to break CPA
security of Π. Then we can construct a nu-PPT adversary B that
breaks the PRF F. The strategy is outlined in the figure below:

B
x

F(x)

A

x∗

F(x∗)

Output b = b′

m

c

m0, m1

c∗

b

1. x $←− {0, 1}n

2. y = F(x)

3. c = (x, m⊕ y)

4. b $←− {0, 1}

5. x∗ $←− {0, 1}n

6. c∗ = (x∗, mb ⊕ F(x∗))

After running this procedure, we guess “Pseudorandom" if b = b′.
Else, we guess random.

Now we argue that

|Pr[BFn(·)(1n) = 1]− Pr[BFn(·)(1n) = 1]|
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is non-negligible.

|Pr[BFn(·)(1n) = 1]− Pr[BFn(·)(1n) = 1]| ≥ 1
2
+ ϵ(n)− (

1
2
+

q(n)
2n )

= ϵ(n)− q(n)
2n

Theorem 4.2. No deterministic encryption scheme Π can be CPA Secure.

Proof. The proof of this claim is simple. If we have a deterministic
encryption scheme, then when we get c∗, we can again try to encrypt
a message and check if c = c∗

4.1.1 Counter Mode Encryption

One construction of a CCA-secure cipher is by the use of the counter
mode.

• Enc(k, (m1, ..., mℓ)) :

1: r $←− {0, 1}n

2: Output c = (r, m1 ⊕ Fk(r + 1), m2 ⊕ Fk(r + 2), ..., mℓ ⊕ Fk(r + ℓ))

Consider the following picture:

x1 x1 + q(n) x2 x2 + q(n) ...

Then the probability of breaking this cipher is

2q(n)− 1
2n · q(n)

In practice, we use block ciphers, which are stronger primitives.

4.2 Message Authentication Codes

Now we address the question of how we can guarantee the integrity
of a message. To achieve this, we will construct a new primitive,
called a message authentication code, or MAC for short. MACs generate
a verifiable tag t for a message m that cannot be forged.

When sending a message, Alice sends the pair (m, t). Once Bob
receives the message, he runs Verify(k, m, t). He accepts the message
if Verify(k, m, t) = 1, otherwise he rejects the message. The formal
definition is stated below:
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Definition 4.6 (Private-Key Encryption Scheme). A MAC scheme Π is
a tuple of algorithms Π = (Gen,MAC,Verify), with the following syntax:

1. k← Gen(1n)

2. t← MAC(k, m)

3. 0/1← Verify(k, m, t)

where n is a security parameter and k, m ∈ {0, 1}l(n)

We impose the following correctness requirement on our MACs:

Definition 4.7 (MAC Correctness).

∀n, k ∈ Gen(1n), m ∈ {0, 1}∗, Pr[Verify(k, m,MAC(k, m)) = 1] = 1

We also want the message authentication codes to be unforgeable.
That is, given a message m, a nu-PPT attacker A should only be able
to forge a tag t for m with negligible probability.

Definition 4.8 (EUF-CMA Security). A MAC scheme Π =

(Gen,MAC,Verify) is EUF-CMA-secure if ∀ nu-PPT A,∣∣∣Pr
[
MAC-forgeA,Π(n) = 1

] ∣∣∣ = negl(n)

Definition 4.9 (MAC-forgeA,Π(n)).

1. Setup: The challenger samples k uniformly from the key space. A is
given 1n.

2. Query: The adversary submits a message m(i); then the challenger com-
putes a tag t(i) ← MAC(k, m(i)) and sends it to the adversary. The
adversary may submit any polynomial number of message queries.

Let Q = {(m(1), t(1)), . . . , (m(q), t(q))} be the set of messages m(i) sub-
mitted in the query phase along with the tags t(i) computed by MAC.

3. Forgery: The adversary outputs a message-tag pair (m∗, t∗). The output
of the game is 1 if (m∗, t∗) /∈ Q and Verify(k, m∗, t∗) = 1. The output is
0 otherwise.

4.3 Fixed-length MACs

Previously, we defined what a MAC is, and specified correctness and
security definitions for MACs. In this section, we’ll define a fixed-
length MAC for length ℓ(n).
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Theorem 4.3. If F : {0, 1}n → {0, 1}n is a secure PRF, then the MAC
scheme Π = (Gen,Mac,Verify) constructed below has EUF-CMA security.

• Gen(1n) :

Output k $←− {0, 1}n

• MAC(k, m) :

Output t = Fk(m)

• Verify(k, m, t)

If t = Fk(m), then return 1.
Otherwise return 0.

That is, we just compute the PRF on our message as the MAC.

Proof. To prove security, suppose for contradiction that there exists
an adversary A that breaks the security for Π. We’d like to construct
an adversary B that breaks the security of the PRF.

Here, the adversary A expects queries for tags, given messages as
input. B can simply forward these requests on to F, and return the
response back to A. Further, A outputs a pair (m∗, t∗), which B can
send m∗ to F, and output whether t = t∗.

B
A

m
t

Fk

...
...

(m∗, t∗)m∗Fk t

t ?
= t∗

Analyzing the probability for B, we have

∣∣∣Pr(BFk(·)(1n) = 1)− Pr(BRn(·)(1n) = 1)
∣∣∣ = ∣∣∣∣εA(n)−

1
2n

∣∣∣∣ = nonnegl(n).

Here, the first term is because the correctness follows immediately
from the correctness of A, and the second term is due to the fact that
the output of Rn is random.
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4.4 Variable-length MACs

Now, let us look at messages with lengths that are a multiple of n.
In particular, we have a few blocks m1, . . . , mℓ, each of size n. There
are a few ways to do this, but we’ll look at a method similar to the
counter mode we looked at last time.

m1 m2 m3 · · · mℓ

Fk Fk Fk . . . Fk

+ + . . . +

This construction avoids having to store a tag equal in length to
the message, but this is not secure, due to length extension attacks. In
particular, suppose we query for the tag t associated with 0n. We can
then query another tag t′ for 0n ⊕ t. Observe here that t′ is also the
tag for 02n.

A solution is to use different keys for each PRF, but this isn’t too
efficient, since we’re still calling the PRF once per block of length
n. We’ll instead improve this to use only one block cipher call—we
do some preprocessing and only call Fk once on the output of the
preprocessing.

In particular, we’ll claim that applying a universal hash function to
the input and then applying the block cipher is a secure MAC.

Definition 4.10 (Universal Hash Function). A function h : F × F ∗ →
F (where F is a field of size 2m) is a universal hash function if for all
m, m′ ∈ F≤ℓ (i.e. m and m′ have length at most ℓ),

Pr
s
(h(s, m) = h(s, m′)) ≤ ℓ

|F| .

That is, the probability of collision is small.

Crucially here, we fix m and m′, and we sample s. (If we fix an s,
we can almost surely find an m and m′ that collide.)

Today, we’ll look at the following function:

h(s, m0, . . . , mℓ−1) = m0 + m1s + m2s2 + · · ·+ mℓ−1sℓ−1 + sℓ.

Claim 4.1. The function defined by

h(s, m0, . . . , mℓ−1) = m0 + m1s + m2s2 + · · ·+ mℓ−1sℓ−1 + sℓ

is a universal hash function.

Proof. We’d like to argue that for a fixed m and m′, and a random s,
the probability that there is a collision is at most ℓ

|F | .
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We’ll look at

h(x, m0, . . . , mt)− h(x, m′0, . . . , m′t) = (m0−m′0)+ · · ·+(mt−1−m′t−1)xℓ−1.

If there is a collision, this difference is 0. The probability that this
polynomial of degree at most ℓ has a zero at x is at most ℓ

|F | , since
it has at most ℓ zeroes. This means that h is indeed a universal hash
function.

Claim 4.2. The MAC given by Fk(h(s, m1, . . . , mℓ)), for the universal
hash function h given prior, is secure. (This is a slight variation on the
Carter–Wegman MAC.)

Proof. Suppose for contradiction that there exists a nu-PPT A that
breaks the security of this scheme.

Here, for appropriately generated k and s, A makes queries m 7→
Fk(hs(m)), and outputs (m∗, t∗).

We’d like to create an adversary B that either breaks the security of
the PRF, or breaks the security of the universal hash function.

B will start by sampling s ∈ F . When given the query for m1,
it computes hs(m1) and queries for Fk(hs(m1)), which it sends back
to A. If Fk was actually pseudorandom, then A is given a pseudo-
random input, and if Fk was random Rn, then A is given a random
input.

A must still be able to generate pairs (m∗, t∗) even when given a
random input, due to the security of the PRF.

B
Asample s ∈ F

hs(m) m
t

Fk

...
...

hs(m∗) (m∗, t∗)
Fk t

t ?
= t∗

Let E be the event that there exists an m, m′ ∈ L ∪ {m∗}, such
that hs(m) = h(m′). If E does not happen, then the hash function
never collides. This means that the attacker only sees random values
depending on distinct inputs, so this reduces to the case from earlier
(when the MAC is just Fk).

As such, we’d like to show that collisions in hs(·) occur with negli-
gible probability.
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To show this, suppose for contradiction that collisions actually do
occur with non-negligible probability. We then want to construct an
adversary B utilizing A that just outputs m and m′ such that when s
is sampled, hs(m) = hs(m′) with high probability.

B will pick a random i, j ∈ {1, . . . , q + 1} (here suppose i < j),
where q is the number of MAC queries. We then run A until the jth
query. Taking the ith and jth query, we then output mi and mj as our
pair of messages. We still need to entertain the queries made by A, so
we can just return random values for tags (giving the same value if it
requests it for the same message).

B
A

i, j $←− {1, . . . , q + 1}

m1

sample t1 t1
...

...
mi

sample ti ti
...

...
mj

(mi, mj)

By assumption, we know that E occurs with non-negligible proba-
bility. That is, among the queries made by A, there is a non-negligible
probability that hs(mi) = hs(mj). Since here the implementation
of B just picks out a pair of random queries from those made by A,
the pair (mi, mj) output by B also has a collision with non-negligible
probability. (In particular, with probability Pr(E)/q2.

This breaks the definition of a universal hash function, which is a
contradiction.

So far, we know how to generate tags of fixed length, and of
lengths that are a multiple of n. If we have a message that is not a
multiple of n, we could potentially just pad the input with 0’s, but
this causes an issue, as m and m∥0 have the same tag.

Instead, one solution is to put the size of the message in the first
block, and we can still put the padding at the end. This way, if the
messages differ by length, the first block will be different, and if the
messages do not differ by length, then we’re essentially just ignoring
the padding. This gives us a MAC for arbitrary-length messages.
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4.5 Authenticated Encryption Schemes

We’ve talked about confidentiality and integrity separately, but gen-
erally we want both properties—when Alice sends a message to Bob,
we’d like for any eavesdropper to be unable to recover the message,
and we’d like Bob to be able to verify that the message actually came
from Alice.

A scheme that achieves both of these conditions is called an au-
thenticated encryption scheme.

Definition 4.11 (Authenticated Encryption Scheme). A scheme Π
is an authenticated encryption scheme if it is CPA-secure, and it has
ciphertext integrity (CI).

Definition 4.12 (Ciphertext Integrity (CI)). Consider the following game
for the scheme Π = (Gen,Enc,Dec).

1: function CIA
Π(n)

2: k ← Gen(1n)

3: c∗ ← AEnc(k,·)(1n)

4: L ← the list of queries made by A
5: return (Dec(k, c∗) ̸= ⊥) ∧ (c∗ /∈ L)
6: end function

A scheme has ciphertext integrity if for all nu-PPT A, Pr(CIA
Π) is negli-

gible.

Observe that an authenticated encryption scheme is also CCA-
secure, since the CI property says that the adversary can never gen-
erate a valid ciphertext. This means that whenever an adversary
requests the decryption of a ciphertext, we can always return ⊥ (un-
less they previously requested a ciphertext for a message, and wants
to decode that ciphertext). This means that the decryption oracle is
essentially useless, and this reduces to the CPA case.

Next, we’ll construct an authenticated encryption scheme, called
“Encrypt-then-MAC”, utilizing a CPA-secure encryption scheme and
an EUF-CMA MAC scheme.
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Claim 4.3. Let Πe = (Gene , Ence , Dece) be a CPA-secure encryption
scheme, and let Πm = (Genm , Macm , Verifym) be an EUF-CMA-secure
MAC scheme.

The following scheme Π = (Gen, Enc, Dec) is an authenticated encryp-
tion scheme.

1: function Gen(1n)
2: ke ← Gene(1n)

3: km ← Genm(1n)

4: return (ke , km)

5: end function

6: function Enc((ke , km), m)
7: c ← Ence(ke , m)

8: t ← Macm(km , c)
9: return (c, t)

10: end function

11: function Dec((ke , km), (c, t), m)
12: if Verifym(km , c, t) then
13: return Dece(ke , c)
14: else
15: return ⊥
16: end if
17: end function

Proof. Suppose for contradiction that we have an adversary A that
breaks the CPA security of Π. The CPA game allows for queries of
the ciphertext for messages m, produces a pair m0 , m1, and then gets
c∗ = Enc(k, mB), and A eventually outputs b ′ to identify which
message was encrypted.

We’d like to construct another adversary B, which breaks the
CPA-security of Πe . The only difference here is the MACs, so B can
sample a km ← Genm(1n), and perform all of the MACs itself.

In particular, when A asks for the ciphertext of M, we pass it
to the oracle for Πe , and attach t ← Macm(km , c). If A is able to
distinguish between ciphertexts of M0 and M1, then we can use the
same bit to distinguish between ciphertexts for Πe .



private-key cryptography 59

B
Akm ← Genm(1n)

C = Ence(ke , m)

(C, Macm(km , C))

m

c

Ence(ke , ·)

...
...

m1 , m2m1 , m2

C∗

(C∗ , Macm(km , C∗))
Ence(ke , mb)

c∗
...

...
b ′

To prove ciphertext integrity, suppose we have an adversary A
that breaks the ciphertext integrity of Π. Here, A asks for ciphertext
queries, and eventually returns a new ciphertext that is valid.

We’d like to construct an adversary B that is able to generate a
new message and a tag, given oracle access to the MAC scheme. The
construction will follow similarly to the prior proof on CPA security.

Here, our adversary B can sample ke ← Gene(1n). When A asks
for the encryption of M, B can send m = Ence(ke , M) to the MAC
oracle, and it returns c = (m, t) to A.

When A returns C∗ = (c∗ , t∗), B can also just return the same,
since the tag t∗ is being computed on c∗ .

B
Ake ← Gene(1n)

C = Ence(ke , m)

T = Macm(km , C)

(C, T)

m

c

Macm(km , ·)

...
...

(C∗ , T∗) c∗

As an example, AES-GCM is the most popular authenticated en-
cryption scheme that is used, and also has the ability to authenticate
additional data. (AES-GCM basically just appends the associated
data to the ciphertext, so that the encryption is only on the message,
but the MAC is on both the ciphertext and the associated data.) This
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scheme uses a counter-mode encryption scheme, and the MAC that
we saw, but makes this more efficient.



5
Digital Signatures

In this chapter, we will introduce the notion of a digital signature. At
an intuitive level, a digital signature scheme helps providing authen-
ticity of messages and ensuring non-repudiation. We will first define
this primitive and then construct what is called as one-time secure
digital signature scheme. An one-time digital signature satisfies a
weaker security property when compared to digital signatures. We
then introduce the concept of collision-resistant hash functions and
then use this along with a one-time secure digital signature to give a
construction of digital signature scheme.

5.1 Definition

A digital signature scheme is a tuple of three algorithms (Gen, Sign, Verify)
with the following syntax:

1. Gen(1n) → (vk, sk): On input the message length (in unary) 1n ,
Gen outputs a secret signing key sk and a public verification key
vk.

2. Sign(sk, m) → σ: On input a secret key sk and a message m of
length n, the Sign algorithm outputs a signature σ.

3. Verify(vk, m, σ) → {0, 1}: On input the verification key vk, a
message m and a signature σ, the Verify algorithm outputs either
0 or 1.

We require that the digital signature to satisfy the following cor-
rectness and security properties.

Correctness. For the correctness of the scheme, we have that ∀m ∈
{0, 1}n ,

Pr [(vk, sk) ← Gen(1n), σ ← Sign(sk, m) : Verify(vk, m, σ) = 1] = 1.

Security. Consider the following game between an adversary and a
challenger .



62 a course in theory of cryptography

1. The challenger first samples (vk, sk) ← Gen(1n). The challenger
gives vk to the adversary.

2. Signing Oracle. The adversary is now given access to a signing
oracle. When the adversary gives a query m to the oracle, it gets
back σ ← Sign(sk, m).

3. Forgery. The adversary outputs a message, signature pair (m∗ , σ∗)

where m∗ is different from the queries that adversary has made to
the signing oracle.

4. The adversary wins the game if Verify(vk, m∗ , σ∗) = 1.

We say that the digital signature scheme is secure if the probability
that the adversary wins the game is negl(n)(n).

5.2 One-time Digital Signature

An one-time digital signature has the same syntax and correctness
requirement as that of a digital signature scheme except that in the
security game the adversary is allowed to call the signing oracle only
once (hence the name one-time). We will now give a construction
of one-time signature scheme from the assumption that one-way
functions exists.

Let f : {0, 1}n → {0, 1}n be a one-way function.

• Gen(1n): On input the message length (in unary) 1n , Gen does the
following:

1. Chooses xi,b ← {0, 1}n for each i ∈ [n] and b ∈ {0, 1}.

2. Output vk =

[
f (x1,0) . . . f (xn,0)

f (x1,1) . . . f (xn,1)

]
and sk =

[
x1,0 . . . xn,0

x1,1 . . . xn,1

]
• Sign(sk, m): On input a secret key sk and a message m ∈ {0, 1}n ,

the Sign algorithm outputs a signature σ = x1,m1∥x2,m2∥ . . . ∥xn,mn .

• Verify(vk, m, σ): On input the verification key vk, a message m
and a signature σ, the Verify algorithm does the following:

1. Parse σ = x1,m1∥x2,m2∥ . . . ∥xn,mn .

2. Compute vk ′i,mi
= f (xi,mi ) for each i ∈ [n].

3. Check if for each i ∈ [n], vk ′i,mi
= vk i,mi . If all the checks pass,

output 1. Else, output 0.

Before we prove any security property, we first observe that this
scheme is completely broken if we allow the adversary to ask for
two signatures. This is because the adversary can query for the sig-
natures on 0n and 1n respectively and the adversary gets the entire
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secret key. The adversary can then use this secret key to sign on any
message and break the security.

We will now argue the one-time security of this construction. Let
A be an adversary who breaks the security of our one-time digital
signature scheme with non-negligible probability µ(n). We will
now construct an adversary B that breaks the one-wayness of f . B
receives a one-way function challenge y and does the following:

1. B chooses i∗ uniformly at random from [n] and b∗ uniformly at
random from {0, 1}.

2. It sets vk i∗ ,b∗ = y

3. For all i ∈ [n] and b ∈ {0, 1} such that (i, b) ̸= (i∗ , b∗), B
samples xi,b ← {0, 1}n . It computes vk i,b = f (xi,b).

4. It sets vk =

[
vk1,0 . . . vkn,0

vk1,1 . . . vkn,1

]
and sends vk to A.

5. A now asks for a signing query on a message m. If mi∗ = b∗ then
B aborts and outputs a special symbol abort1. Otherwise, it uses it
knowledge of xi,b for (i, b) ̸= (i∗ , b∗) to output a signature on m.

6. A outputs a valid forgery (m∗ , σ∗). If m∗i∗ = mi∗ then B aborts
and outputs a special symbol abort2. If it does not abort, then
it parses σ∗ as 1, m1∥x2,m2∥ . . . ∥xn,mn and outputs xi∗ ,b∗ as the
inverse of y.

We first note that conditioned on B not outputting abort1 or abort2,
the probability that B outputs a valid preimage of y is µ(n). Now,
probability B does not output abort1 or abort2 is 1/2n (this is be-
cause abort1 is not output with probability 1/2 and conditioned on
not outputting abort1, abort2 is not output with probability 1/n).
Thus, B outputs a valid preimage with probability µ(n)/2n. This
completes the proof of security.

We now try to extend this one-time signature scheme to digital
signatures. We show how to use the arbitrary-length WOOF we
constructed to boost this one-time, fixed-length digital signature
scheme into a one-time, arbitrary-length digital signature scheme.

5.2.1 Removing Length-Restriction from One-Time Digital Signatures

Let (Genℓ , Signℓ , Verifyℓ) be a length-restricted one-time digital sig-
nature for messages of length ℓ(n). Let hs : {0, 1}∗ → {0, 1}n be a
WOOF. First we will review an insecure first attempt at a construction
for ℓ(n) = n:

• GenBAD(1n): Run (pkℓ , skℓ) ← Genℓ(1n), s ← I(1n). Output
((pkℓ , s), skℓ).
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• SignBAD(sk = skℓ , m): Output Signℓ(skℓ , hs(m)).

• VerifyBAD(pk = (pkℓ , s), m, σ): Output Verifyℓ(pkℓ , hs(m), σ).

Notice that this construction does not work because the seed for
the WOOF is revealed before the message is chosen, in which case
WOOF security does not apply.

To avoid this, we can use the following construction for ℓ(n) =

k(n) + n where k(n) is the length of the seed produced by I(1n):

• Gen(1n): Run (pkℓ , skℓ) ← Genℓ(1n). Output (pkℓ , skℓ).

• Sign(sk = skℓ , m): Run s ← I(1n) and σℓ ← Signℓ(skℓ , s||hs(m)).
Output (σℓ , s).

• Verify(pk = pkℓ , m, σ = (σℓ , s)): Output Verifyℓ(pkℓ , s||hs(m), σℓ).

Note that now the seed is chosen after the message. We will give a
proof sketch of the security for this construction. Assume for con-
tradiction that we have a nu-PPT adversary A which succeeds with
non-negligible probability at the digital signature security game
for (Gen, Sign, Verify). We will now construct a nu-PPT adversary
B who succeeds with non-negligible probability at the digital sig-
nature security game for (Genℓ , Signℓ , Verifyℓ), a contradiction. B
receives pkℓ from its challenger and passes this along to A. When
A queries the signing oracle with message m, B runs s ← I(1n),
computes mℓ = s||hs(m), queries its signing oracle with message mℓ

to receive σℓ and returns σ = (s, σℓ) to A. Finally, when A returns
m∗ , σ∗ = (s∗ , σ∗ℓ ), B outputs m∗ℓ = s∗ ||hs∗ (m∗), σ∗ℓ .

Since we have replicated the expected input distribution for A,
it will succeed with non-negligible probability. Notice that B will
succeed when A does as long as m∗ℓ ̸= mℓ . In analyzing the success
probability of B we have two cases to consider based on whether
s∗ = s. Notice that A must have non-negligible success either when
s∗ = s or when s∗ ̸= s or both. If Pr[s∗ ̸= s ∧ A succeeds] is non-
negligible, then B also succeeds with non-negligible probability since
m∗ℓ = s∗ ||hs∗ (m∗) ̸= s||hs(m) = mℓ in this case. Now assume that
Pr[s∗ = s ∧ A succeeds] is non-negligible. When A succeeds in this
case, it must have found m∗ ̸= m, and so hs∗ (m∗) = hs(m) with only
negligible probability because otherwise WOOF security is broken.
Thus with non-negligible probability m∗ℓ ̸= mℓ and B succeeds as
well. Therefore either way B succeeds in the digital signature game
against (Genℓ , Signℓ , Verifyℓ) with non-negligible probability.

5.3 Multiple-Message Digital Signatures

Now we will show how to covert this one-time, no-length restric-
tion digital signature scheme (Gen, Sign, Verify) into a ef-ema no-
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length restriction digital signature scheme by utilizing a pseudoran-
dom function PRF. For each α ∈ {ϵ} ∪ {0, 1}≤n , let pkα , skα =

Gen(1n ; PRFs(α10 . . . 0)) such that |α10 . . . 0| = n + 1 (i.e. Gen is
run with randomness determined by the PRF on an input specified
by α). We will use these to make a tree of keys so that the keys used
for each message will be distinct with high probability, so WOOF
security will continue to apply each time the scheme is used. Note
that whenever Sign is called, we require the WOOF to be run with a
deterministic seed sW

α = PRFs′ (α10 . . . 0). This way paths through
the tree will deterministically map to the corresponding signatures.
The construction is as follows:

• GEN(1n): Output (pkϵ , s ← {0, 1}n), namely the root public key
and the seed for the PRF so the rest of the keys can be generated.

• SIGN(sk, m):

1. Draw a random path through the key tree r ← {0, 1}n .

2. Now use the secret key at each level to sign its children’s public
keys and continue to do this along the random path until a
leaf is hit, i.e. iteratively sign the random path and its co-path.
Namely, for each i = 0, 1, . . . , n − 1, let αi = r1r2 · · · ri ,
mi = pkαi ||0 ||pkαi ||1, and σi = Sign(skαi , mi).

3. Let σn = Sign(skr , m).

4. Output Σ = (r, m0 , σ0 , . . . , mn−1 , σn−1 , σn).

• VERIFY(pk, m, Σ = (r, σ0 , . . . , σn−1 , σn)): Use r and the mi

to determine pkαi and for each i ∈ [n] run Verify(pkαi , mi , σi),
accepting if all of those do.

The idea is that because the root pkϵ is trusted and the correspond-
ing secret keys of one level are used to validate the pk of the level
below, trust is maintained down the path and the ultimate pkr can be
trusted to be used to check the signature on m itself.

We will now give a proof sketch for the security of this construc-
tion. Assume for contradiction that we have a nu-PPT adversary A
which succeeds with non-negligible probability at the digital signa-
ture security game for (GEN, SIGN, VERIFY). Let A’s interaction
with this security game be called Hybrid H0. First we will consider
the hybrid H1 where the PRF is replaced by a truly random function.
A’s success probability in H1 is still some non-negligible ϵ(n) due to
PRF security. Now we will consider the hybrid H2 where if the ran-
domness returned by any two of the signing oracle queries is equal,
i.e. r j = r j′ for some distinct j, j ′ ∈ [q], then A aborts. Notice that the
probability of this happening is only q2/2n , a negligible amount, so
A’s success probability ϵ(n) − q2/2n remains non-negligible. Thus
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going forward we can assume that the randomness r j used by the
oracle to sign each query m j is distinct.

Now notice that either A outputs a message-signature pair (M∗ , Σ∗)
which uses r∗ = r j for some j ∈ [q] or r∗ ̸= r j for all j ∈ [q]. We will
give some intuition for what happens in each of these cases. In the
first case, since signatures in this scheme are deterministic, to succeed
A’s signatures must be the same as Σ j’s along the path r∗ = r j until
doing a forgery at the leaf, breaking the (Gen, Sign, Verify) scheme
for M∗ which is distinct from all of the m j queries. In the second
case, A goes along a path r∗ ̸= r j , so at the first node which diverges
from all r j it must forge a signature that verifies with an honest pub-
lic key from the level above, breaking the (Gen, Sign, Verify) scheme
for the corresponding α∗i which is distinct from all of the other α

j
i

that were used to answer queries.
This can be formalized by constructing a nu-PPT adversary B for

the one-time digital signature security game of (Gen, Sign, Verify)
who takes the pk it’s been given and guesses which query A forges
for, using its pk and one-time oracle to provide a signature for that
query and otherwise answering honestly using self-generated keys.
This degrades B’s probability of success by ϵ(n)/q which is still
non-negligible.

Next, after introducing collision resistant hash functions, we will
see a different, though closely related, alternate construction for
multiple-message digital signatures.

5.4 Collision Resistant Hash Functions

As the name suggests, collision resistant hash function family is a set
of hash functions H such that for a function h chosen randomly from
the family, it is computationally hard to find two different inputs
x, x ′ such that h(x) = h(x ′). We now give a formal definition.

5.4.1 Definition of a family of CRHF

A set of function ensembles

{Hn = {hi : Dn → Rn}i∈ In }n

where |Dn | < |Rn | is a family of collision resistant hash function
ensemble if there exists efficient algorithms (Sampler, Eval) with the
following syntax:

1. Sampler(1n) → i : On input 1n , Sampler outputs an index i ∈ In .

2. Eval(i, x) = hi(x) : On input i and x ∈ Dn , Eval algorithm
outputs hi(x).



digital signatures 67

3. ∀ PPT A we have

Pr[i ← Sampler(1n), (x, x ′) ← A(1n , i) : hi(x) = hi(x ′) ∧ x ̸= x ′ ] ≤ negl(n)(n)

5.4.2 Collision Resistant Hash functions from Discrete Log

We will now give a construction of collision resistant hash functions
from the discrete log assumption. We first recall the discrete log
assumption:

Definition 5.1 (Discrete-Log Assumption). We say that the discrete-
log assumption holds for the group ensemble G = {Gn}n∈N, if for every
non-uniform PPT algorithm A we have that

µA(n) := Pr
x←|Gn |

[A(g, gx ) = x]

is a negligible function.

We now give a construction of collision resistant hash functions.

• Sampler(1n) : On input 1n , the sampler does the following:

1. It chooses x ← |Gn |.
2. It computes h = gx .

3. It outputs (g, h).

• Eval((g, h), (r, s)) : On input (g, h) and two elements (r, s) ∈
|Gn |, Eval outputs gr hs .

We now argue that this construction is collision resistant. As-
sume for the sake of contradiction that an adversary gives a collision
(r1 , s1) ̸= (r2 , s2). We will now use this to compute the discrete
logarithm of h. We first observe that:

r1 + xs1 = r2 + xs2

(r1 − r2) = x(s2 − s1)

We infer that s2 ̸= s1. Otherwise, we get that r1 = r2 and hence,
(r1 , s1) = (r2 , s2). Thus, we can compute x = r1−r2

s1−s2
and hence the

discrete logarithm of h is computable.

5.5 CRHF-Based Multiple-Message Digital Signature

We now explain how to combine collision-resistant hash functions
and one-time signatures to get a signature scheme for multiple mes-
sages. We first construct an intermediate primitive wherein we will
still have the same security property as that of one-time signature
but we would be able to sign messages longer than the length of the
public-key.1 1 Note that in the one-time signature

scheme that we constructed earlier, the
length of message that can be signed is
same as the length of the public-key.
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5.5.1 One-time Signature Scheme for Long Messages

We first observe that the CRHF family H that we constructed earlier
compresses 2n bits to n bits (also called as 2-1 CRHF). We will now
give an extension that compresses an arbitrary long string to n bits
using a 2-1 CRHF.

Merkle-Damgard CRHF. The sampler for this CRHF is same as that
of 2-1 CRHF. Let h be the sampled hash function. To hash a string
x, we do the following. Let x be a string of length m where m is an
arbitrary polynomial in n. We will assume that m = kn (for some k)
or otherwise, we can pad x to this length. We will partition the string
x into k blocks of length n each. For simplicity, we will assume that k
is a perfect power of 2 or we will again pad x appropriately. We will
view these k-blocks as the leaves of a complete binary tree of depth
ℓ = log2 k. Each intermediate node is associated with a bit string y
of length at most ℓ and the root is associated with the empty string.
We will assign a tag ∈ {0, 1}n to each node in the tree. The i-th leaf
is assigned tagi equal to the i-block of the string x. Each intermediate
node y is assigned a tagy = h(tagy∥0∥tagy∥1). The output of the hash
function is set to be the tag value of the root. Notice that if there is a
collision for this CRHF then there are exists one intermediate node y
such that for two different values tagy∥0, tagy∥1 and tag′y∥0, tag′y∥1 we
have, h(tagy∥0, tagy∥1) = tag′y∥0, tag′y∥1. This implies that there is a
collision for h.

Construction. We will now use the Merkle-Damgard CRHF and
the one-time signature scheme that we constructed earlier to get a
one-time signature scheme for signing longer messages. The main
idea is simple: we will sample a (sk, vk) for signing n-bit messages
and to sign a longer message, we will first hash it using the Merkle-
Damgard hash function to n-bits and then sign on the hash value.
The security of the construction follows directly from the security of
the one-time signature scheme since the CRHF is collision-resistant.

5.5.2 Signature Scheme for Multiple Messages

We will now describe the construction of signature scheme for multi-
ple messages. Let (Gen′,Sign′,Verify′) be a one-time signature scheme
for signing longer messages.

1. Gen(1n) : Run Gen′(1n) using to obtain sk, vk. Sample a PRF key K.
The signing key is (sk, K) and the verification key is vk.

2. Sign((sk, K), m) : To sign a message m, do the following:
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(a) Parse m as m1m2 . . . mℓ where each mi ∈ {0, 1}.

(b) Set sk0 = sk and m0 = ϵ (where ϵ is the empty string).

(c) For each i ∈ [ℓ] do:

i. Evaluate PRF(m1∥ . . . ∥mi−1∥0) and PRF(m1∥ . . . ∥mi−1∥1) to
obtain r0 and r1 respectively. Run Gen′(1n) using r0 and r1 as
the randomness to obtain (ski,0, vki,1) and (ski,1, vki,1).

ii. Set σi = Sign(ski−1,mi−1 , vki,0∥vki,1)

iii. If i = ℓ, then set σℓ+1 = Sign(ski,mi , m).

(d) Output σ = (σ1, . . . , σℓ+1) along with all the verification keys as
the signature.

3. Verify(vk, σ, m): Check if all the signatures in σ are valid.

To prove security, we will first use the security of the PRF to re-
place the outputs with random strings. We will then use the security
of the one-time signature scheme to argue that the adversary cannot
mount an existential forgery.

5.6 Trapdoor Permutations and RSA

Definition 5.2 (Trapdoor Permutation). A function family { fs : Ds →
Ds}s∈{0,1}∗ is a one-way trapdoor permutation if there exists PPT
I, D, F, F−1 such that

• (s, τ)← I(1n) produces the seed and trapdoor,

• D(s) outputs a uniformly random element of Ds,

• ∀s ∈ I(1n), x ∈ Ds, F(s, x) = fs(x),

• ∀(s, τ) ∈ I(1n), y ∈ Ds, F−1(τ, y) = f−1
s (x), and

• fs is one-way.

The RSA trapdoor permutation construction is as follows:

• IRSA(1n) → (s = (N, e), τ = (N, d) for N = PQ for 2n−1 ≤ P <

Q ≤ 2n such that d = e−1 mod ϕ(n) for e < N which is coprime to
ϕ(n) = (P− 1)(Q− 1). Let Ds = {1, . . . , N}.

• FRSA(s, x) = xe mod N.

• F−1
RSA(τ, x) = yd mod N.

Unfortunately, under the assumption that factoring is hard, we still
don’t have a security proof for the RSA trapdoor permutation in
the plain model. However, we will see a proof in what’s called the
“random oracle model” next.
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5.7 Random Oracle Model

We looked at RSA-FDH in the last section, and in this section we’ll
continue on and provide some semblance of a security analysis of the
scheme.

As a note, collision resistance of the hash function isn’t quite
enough for the security of the RSA-FDH scheme. In particular, if we
can find three messages m1, m2, m3 such that H(m1) · H(m2) = H(m3)

(mod N) (this isn’t protected against with collision resistance), then
we can break the scheme, assuming that we use the RSA trapdoor
function. Here, we’d have

σ1σ2 = f−1(H(m1)) · f−1(H(m2))

= H(m1)
d H(m2)

d (mod N)

= (H(m1)H(m2))
d (mod N)

= H(m3)
d (mod N)

Ideally, we’d like to have a proof of the security of this scheme, but
nobody has been able to come up with one yet. Instead, we can only
hope to find some kind of evidence for the security of the scheme.

This evidence comes from the random oracle model (ROM), other-
wise known as the random oracle methodology.

Suppose we’re given a scheme ΠH = (AH , BH , CH , . . .), where calls
to the hash function H is explicit. (Some functions may not call the
hash function, but that’s okay.)

We’d like to perform some analysis on these schemes, even though
we may not fully understand the properties of the hash function—
we’d like to abstract it out. To do this, we instead prove the security
of ΠO = (AO, BO, CO, . . .), where the hash function is replaced with
an oracle O for a truly random function.

This oracle assumption is a very strong one, and is perhaps not the
most indicative of the security of the original scheme—there are cases
where the scheme ΠO under an oracle O is secure, but replacing the
oracle with any instantiation breaks the security of the scheme.

When we’re trying to prove security of ΠO, we’ll look at an adver-
sary AO, which has access to O. Here, observe that we can provide
the answers to the oracle queries—we just need to find a contradic-
tion to the existence of the function A, regardless of what the oracle
O does.

Note here that the adversary A in this case is forced to explicitly
call the oracle for its hash function queries—the fact that we can see
these calls is called observability. In the standard model, we can’t
actually see the queries that the adversary makes, since it just runs
the predefined hash function itself.
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Another property is called programmability: since we’re working
with a random oracle, the only thing that matters is that the output
of the oracle looks uniformly random. This means that we can re-
place a uniform output x of the oracle with f (x), for some one-way
permutation f . This allows us to control some secret parameter that
affects the output distribution of the oracle O. In the standard model,
we don’t have programmability—we again just have a fixed hash
function that we can’t change after the fact.

Theorem 5.1. RSA-FDH is EUF-CMA secure in the ROM, assuming
{ fs}s is a secure family of trapdoor permutations.

Proof. Suppose we have an adversary A in this model.
The first thing it is given is a public key pk = s. The adversary

then gets to make signature queries: m 7→ f−1
t (O(m)). At the very

end, it must output a forged signature (m∗, σ∗). This adversary is
also allowed to make separate hash queries to the random oracle:
m 7→ O(m).

A

pk = s

m
f−1
t (O(m))

Signature queries

(m∗, σ∗)

m
O(m)

Hash queries to O

WLOG, suppose that for every message m that AO queries for a
signature, it has already made a query for the same message to the
hashing oracle. (Otherwise, we can simply make a wrapper around
AO that does this.) We can also assume WLOG that when the ad-
versary outputs (m∗, σ∗), it has also made the hashing query O(m∗).
Let’s call this hybrid H0.

For the hybrid H1, we’ll abort the machine if for any m, m′ in the
hash queries, we have O(m) = O(m′), essentially removing all col-
lisions from the oracle. This happens with negligible probability
(q2/2n), so this hybrid is still indistinguishable from H0.

Next, we’ll construct an adversary B using A, and inverts the trap-
door permutation. In particular, given (s, y∗), where y∗ = f−1(x∗),
the goal is to output x∗.

Suppose A makes qs signing queries and qh hashing queries.
We pass in s as pk. B first samples an i∗ ← {1, . . . , qh}. We then

set the output of the ith hash query to y∗. In particular, we have
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O(mqi∗ ) = y∗. If the adversary happens to call a signing query on i∗,
we’ll abort.

We still need to specify what happens on all other queries, and we
want to make sure that we can respond with a signature query on all
of these other queries. For i ̸= i∗, we sample x ∈ Ds, and compute
y = fs(x). On the ith hashing query, we then set O(mi) = y. If the
adversary later requests a signature on the same mi, then we output x
for the signing query. (This is because f−1(O(mi)) = f−1(y) = x.)

In particular, the adversary must have called the hashing query
for its output m∗, and with some probability, this is the i∗th query, in
which case the message m∗ is our inverse x∗.

Analyzing the probabilities, we have that

Pr(B outputs f−1(x∗)) = Pr(A successful∧ no sign query on mi∗ ∧m∗ = mq∗i
)

= ε×
(

1− 1
qh

)qs

× 1
qh

≈ ε

qh

which is non-negligible, assuming A is successful with non-negligible
probability.

We’ll now talk about a different scheme and analyze its security
under the random oracle model.

This scheme is called the Schnorr signature scheme. Given a group G
of prime order q and a hash function H : {0, 1}∗ → Zq, we define

• Gen(1n) = (pk = gx, sk = x ← Zq)

• Sign(sk, m):

k← Zq

r = gk

h = H(m∥r)
s = k + hx
σ = (h, s)

• Verify(pk, m, σ):

output h ?
= H(m∥ gs

pkh )

Theorem 5.2. The Schnorr signature scheme is EUF-CMA secure in the
ROM, assuming the discrete log problem is hard.

Proof. The adversary AO gets a public key pk = gx, can make signing
queries m 7→ Sign(x, m) and hashing queries (m, z) 7→ O(m∥z), for
z ∈ G. A then returns a forgery (m∗, σ∗).
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A

pk = gx

m
σ = Sign(x, m)

Signature queries

(m∗, σ∗)

(m, z)
O(m∥z)

Hash queries to O

WLOG, we can assume that m∗∥r∗ is in the list of hash queries
(where r∗ was the value computed in the output signature σ∗).

We’ll define a modified signing algorithm as follows:

function Sign’(sk, m)
h, s ∈ Zq uniformly

gk ← gs

ghx = gs

pkh

h = H(m∥gk)

output (h, s)
end function

The main idea here is to provide a random signature, consistent with
the definition of Sign, so that Verify will still succeed.

We’ll then define a wrapper A′O, which performs these modified
signing queries by itself, since it no longer requires the secret key x.
As such, A′O only makes hashing queries, and produces (m∗, σ∗). In
particular, A′ depends on pk, q1, h1, . . . , qH , hH , but all of the queries
q1, . . . , qH are deterministic depending on the previous hash out-
put (or dependent on pk in the case of q1). This means that A′ can
actually be thought of as a function of

A′(pk, h1, h2, . . . , hH).

The main insight that we’ll use is that we can run A′ until the (i∗ −
1)th query, and on the i∗th query, we run the adversary twice, on
two different possible responses: hi∗ and h′i∗ . These two executions
share the first i∗ − 1 hashing queries, and both are perfectly valid
executions of the adversary. We’ll use these two executions to break
the discrete log problem.

Let us define B that breaks the discrete log problem, given as
input (g, gx). Here, we’ll let gx be the public key.

In response to hashing queries, if A′ asks for the hash of m∥z, we
respond with a random value (or the same value as before if queried
multiple times) as O(m∥z).

Now, we’d like to be able to find x, utilizing the behavior of A′.
At the i∗th query, we run the adversary twice, with hi∗ as the hash in
the first execution, and h′i∗ as the hash in the second execution. In the
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first execution, we would have gotten queries qi∗ , qi∗+1, . . . , qh, and
outputted (m∗, σ∗). In the second execution we would have gotten
queries q′i∗ , q′i∗+1, . . . , q′h, and outputted (m′∗, σ′∗).

Now, in the i∗th query, note that s = k + hx in the first execution,
and s′ = k + h′x in the second execution. Crucially, the value of k is
the same here, since the query utilizes the same value of r, and we
can solve for x = s−s′

h−h′ .
The probability that the adversary A′ succeeds in producing a

forgery while utilizing i∗ is µ(n) = ε(n)/qh. For ease, let us also
define the two halves of the input to A′ as α = (pk, h1, . . . , hi∗−1) and
β = (hi∗ , . . . , hqh). We then define the “good set” as

S =

{
α | Pr

β
(A′(α, β) outputs a forgery) ≥ µ(n)

2

}
.

We can also see that Pr(α ∈ S) ≥ µ(n)
2 ; to see why, suppose by

contradiction Pr(α ∈ S) < µ(n)
2 . Here, we have

Pr(A′ succeeds) = Pr(A′ succeeds | α ∈ S)Pr(α ∈ S) + Pr(A′ succeeds | x /∈ S)Pr(α /∈ S)

< 1 · µ(n)
2

+
µ(n)

2
· 1 < µ(n)

which is a contradiction.
The probability that B succeeds is thus

Pr(α ∈ S)Pr(A′(α, β) succeeds | α ∈ S)Pr(A′(α, β′) succeeds | α ∈ S) ≥
(

µ(n)
2

)3

,

due to the definition of S from earlier.
This means that in total, our probability of success is

Pr(B succeeds) ≥ ε3(n)
8q3

h
,

which is non-negligible if A′ succeeds with non-negligible probabil-
ity, giving us our contradiction.

5.8 BLS Signatures

Bilinear Pairings. Recall that we used prime order groups G to
build the Schnorr signature scheme. Today we will introduce an-
other mathematical object, pairing friendly groups, which support
a new “bilinear pairing” operation defined as follows. Let G1, G2

and GT be groups of prime order p. We define a bilinear pairing
e : G1 × G2 → GT to be an efficiently computable map that satisfies the
following properties:

• Bilinearity: For all a, b ∈ Zp and g1 ∈ G1, g2 ∈ G2, we have
e(ga

1, gb
2) = e(g1, g2)

ab.
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• Non-degenerate: e(g1, g2) ̸= 1GT .

Observe that in any group, by using the group operation, one can
compute “additions” of the scalar exponents, but in pairing friendly
groups one can additionally compute one “multiplication” of the
scalar exponents.

Note that while a pairing provides us with additional functional-
ity, it also means that we need to reevaluate any hardness assump-
tions that we have made. Consider for instance the decisional Diffie-
Hellman (DDH) assumption which states that it is hard to distinguish
between (g, ga, gb, gab) and (g, ga, gb, gc) for random a, b, c ∈ Zp.
In the presence of a bilinear pairing, natural variants of the DDH
assumption are no longer hard such as distinguishing between
(g1, g2, ga

1, gb
2, gab

1 ) and (g1, g2, ga
1, gb

2, gc
1). Instead, we will define new

assumptions that are conjectured to be hard even given a bilinear
pairing.

co-CDH assumption. Let G1, G2 be groups of prime order with gen-
erators g1 and g2 and let e : G1 × G2 → GT be an efficiently com-
putable bilinear pairing. The co-CDH assumption states that for all
non-uniform PPT adversaries A:

Pr
[
A(g1, g2, ga

1, gb
1, gb

2)→ gab
1 | a, b←$ Zp

]
≤ negl(n)

BLS Signature scheme. We are now ready to describe the BLS signa-
ture scheme 2. 2 Dan Boneh, Ben Lynn, and Hovav

Shacham. Short signatures from the
Weil pairing. In Colin Boyd, editor, Ad-
vances in Cryptology – ASIACRYPT 2001,
volume 2248 of Lecture Notes in Com-
puter Science, pages 514–532, Gold
Coast, Australia, December 9–13, 2001.
Springer, Berlin, Heidelberg, Germany

• Gen(1λ): Sample sk←$ Zp and set vk← gsk2 . Output (vk, sk).

• Sign(sk, m): Given a message m ∈ {0, 1}∗, output σ ← H(m)sk,
where H : {0, 1}∗ → G1 is a hash function that maps arbitrary
strings to elements in G1.

• Verify(vk, m, σ): Output e(σ, g2)
?
= e(H(m), vk).

Correctness. Correctness is easy to see by plugging in explicit expres-

sions for the signature and verification key – e(σ = H(m)sk, g2)
?
=

e(H(m), vk = gsk2 ).

Security. If H is modelled as a random oracle, we will show that
if there exists an adversary A that can forge a signature with non-
negligible probability, then we can use A to build B that can solve the
co-CDH problem with non-negligible probability.

Theorem 5.3. The BLS signature scheme is is existentially unforgeable
under chosen message attacks assuming the co-CDH problem is hard in the
random oracle model.
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Proof. We will use a similar strategy as in the proof of RSA full do-
main hash. Let A be a non-uniform PPT adversary that can forge a
signature with non-negligible probability. We will use A to build a
non-uniform PPT adversary B that can solve the co-CDH problem
with non-negligible probability. B works as follows:

• B receives (g1, g2, ga
1, gb

1, gb
2) as input and is tasked with computing

gab
1 .

• B now runs the EUF-CMA game with A where A makes signing
queries and in the end outputs a forgery (m∗, σ∗), where m∗ has
not been previously queried.

• At the start of the protocol, B sets vk = gb
1 and sends it to A. For

all random oracle queries H(m), A samples r ←$ Zp and sets
H(m) = gr

1. When A asks for a signature on mi, B samples ri ←$

Zp and sets H(mi) = gri
1 (if the query has not been previously

made). It then responds with σi = H(mi)
b = (gb

1)
ri . However, for a

randomly chosen index i∗ (out of the maximum number of queries
A can make), B sets H(mi∗) = ga

1. Now, if A asks for a signature
on the chosen mi∗ , B aborts and restarts the EUF-CMA game. In
the ends, A outputs a forgery with non-negligible probability. And
since there are only a polynomial number of queries, A outputs
a forgery on mi∗ with non-negligible probability. In which case B
outputs σi∗ as its output in the co-CDH game.

We now analyze the probability that B solves the co-CDH prob-
lem.

Pr[B → gab
1 ] = Pr[A outputs forgery∧mi∗ was not queried∧ forgery on mi∗ ]

≥ ϵ×
(

1− 1
qh

)qs

× 1
qh

which is non-negligible. Thus, by contradiction, the BLS signature
scheme is existentially unforgeable under chosen message attacks
assuming the co-CDH problem is hard in the random oracle model.

Exercises

Exercise 5.1. Digital signature schemes can be made determin-
istic. Given a digital signature scheme (Gen,Sign,Verify) for which
Sign is probabilistic, provide a construction of a digital signature scheme
(Gen′, Sign′,Verify′) where Sign′ is deterministic.



6
Public Key Encryption

Public key encryption allows two parties to communicate with each
other with the guarantees of privacy for their messages against an
eavesdropper who monitors all communication between the two
parties. Recall that we were able to build Digital Signatures and
Symmetric Key Encryption, from the weakest building block in cryp-
tography – one-way functions. However, there are lower bounds 1 1 Russell Impagliazzo and Steven

Rudich. Limits on the provable conse-
quences of one-way permutations. In
21st Annual ACM Symposium on Theory
of Computing, pages 44–61, Seattle, WA,
USA, May 15–17, 1989. ACM Press

suggesting that public key encryption cannot be built from one-way
functions alone. Instead, we will build public key encryption from
more structured assumptions (which are a stronger assumption in the
sense that they imply one-way functions).

6.1 Definitions

Definition 6.1 (Public Key Encryption). A public key encryption scheme
is a tuple of three algorithms (Gen, Enc,Dec) defined as follows:

• Gen(1n)→ (pk, sk): outputs a public key and secret key (pk, sk).

• Enc(pk, m) → c: Takes as input the public key and a message m and out-
puts a ciphertext c.

• Dec(sk, c) → m: Takes as input a secret key sk and ciphertext c, and out-
put a message m.

Definition 6.2 (Perfect Correctness). A public key encryption scheme
(Gen, Enc,Dec) is said to be correct if for all n ∈ N, (pk, sk) ← Gen(1n),
m ∈ {0, 1}∗, it holds that

Pr[Dec(sk,Enc(pk, m)) = m] = 1

The above definition can be relaxed to allow for a negligible probabil-
ity of error during decryption and still remain meaningful.

We now define two different notions of security for public key
encryption schemes – IND-CPA and IND-CCA security.
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Definition 6.3 (IND-CPA Security). A public key encryption scheme
(Gen, Enc,Dec) is said to be IND-CPA-secure if for all non-uniform PPT
A, ∣∣∣∣Pr[ExpCPA(n)A = 1]− 1

2

∣∣∣∣ ≤ negl(n),

where ExpCPA(n)A is defined as follows:

• (pk, sk)← Gen(1n).

• b←$ {0, 1}.

• A(pk)→ (m0, m1, st).

• c∗ ← Enc(pk, mb).

• A(c∗, st)→ b′.

• Output 1 if b = b′ and 0 otherwise.

Definition 6.4 (IND-CCA Security). A public key encryption scheme
(Gen, Enc,Dec) is said to be IND-CCA-secure if for all non-uniform PPT
A, ∣∣∣∣Pr[ExpCCA(n)A = 1]− 1

2

∣∣∣∣ ≤ negl(n),

where ExpCCA(n)A is defined as follows:

• (pk, sk)← Gen(1n).

• b←$ {0, 1}.

• ADec(sk)(pk)→ (m0, m1, st).

• c∗ ← Enc(pk, mb).

• ADec(sk)(c∗, st) → b′, where the decryption oracle now returns ⊥ when
queried on c∗.

• Output 1 if b = b′ and 0 otherwise.
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6.2 Trapdoor Functions

Definition 6.5 (Trapdoor Function). A trapdoor function is a tuple of
four algorithms (Gen, f , f−1, D) defined as follows:

• Gen(1n)→ (s, t): outputs an index s and corresponding trapdoor t.

• D(s): Outputs a description of the domain of the trapdoor function.

• f (s, x) → y: Takes as input an index s and a element x from the domain
of the trapdoor function and outputs an element y.

• f−1(t, y) → x: Takes as input a trapdoor t and an element y from the
range of the trapdoor function and outputs an element x.

We require the following properties:

• Correctness: For all n ∈ N, (s, t) ← Gen(1n), x ∈ D(s), it holds that
Pr[ f−1(t, f (s, x)) ̸= x] = negl(n). Note that if we demand that f is in-
jective, then this property is automatically satisfied.

• One-wayness: For all non-uniform PPT A, we have Pr[A(s, y) → x |
(s, t)← Gen(1n), x ←$ D(s), y← f (s, x)] = negl(n).

6.3 Public Key Encryption from Trapdoor Functions

Given a trapdoor function, we can build a public key encryption
scheme as follows:

• Gen(1n): Run TDF.Gen(1n) to obtain (s, t). Set pk = s and sk = t.

• Enc(pk, m): Sample x ←$ D(s) and compute y ← f (s, x). Sample
r ←$ {0, 1}|x| and output c = (y, r, m⊕ HC(x, r)), where HC is the
hardness concentration bit, as defined in Section 2.4.

• Dec(sk, c): Parse c = (y, r, z) and output m = z⊕HC( f−1(t, y), r).

Proof Sketch. To show that the above scheme is CPA secure, observe
that the message space {0, 1}. So the only two messages the distin-
guisher can pick are m0 = 0 and m1 = 1. Now if the distinguisher
can indeed distinguish between encryptions of m0 and m1, then the
same distinguisher can be used to identify the hardness concentration
bit. By using a similar strategy as in the proof of Theorem 2.3, we can
recover the pre-image x of the trapdoor function. Thus, violating the
one-wayness of the trapdoor function.
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6.4 Public Key Encryption from Computational Diffie-Hellman

Although we have a construction of public key encryption from trap-
door functions, we did not know how to build trapdoor functions
from some very natural assumptions such as CDH for quite some
time. It was only recently that Garg and Hajiabadi 2 showed that 2 Sanjam Garg and Mohammad Haji-

abadi. Trapdoor functions from the
computational Diffie-Hellman assump-
tion. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryp-
tology – CRYPTO 2018, Part II, volume
10992 of Lecture Notes in Computer Sci-
ence, pages 362–391, Santa Barbara, CA,
USA, August 19–23, 2018. Springer,
Cham, Switzerland

this was indeed possible. Given the non-trivial nature of the con-
struction, we will not cover it in this course and instead provide a
direct construction of public key encryption from the Computational
Diffie-Hellman (CDH) assumption.

Let G be a prime order group of order p with generator g, where
the CDH problem is assumed to be hard.

• Gen(1n): Sample sk←$ Zp and set pk← gsk. Output (pk, sk).

• Enc(pk, m): Sample α ←$ Zp, and set y ← gα, k ← pkα. Now
sample r ←$ {0, 1}|B| and output c = (y, r, m⊕HC(k, r)).

• Dec(sk, c): Parse c = (y, r, z) and compute k ← ysk. Output
m = z⊕HC(k, r).

Proof Sketch. The proof of security is similar to the proof of security
for the trapdoor function based public key encryption scheme. The
only difference is that we now we reduce the hardness of the CDH
problem.

6.5 Improving Efficiency.

The above construction can only be used to encrypt a single bit and
results in a ciphertext of size O(poly(n)). Encrypting a message with
M bits, results in a ciphertext of size O(M · poly(n)). Encryption and
decryption also requires O(M) public-key operations (evaluating
the TDF/group operations) and we would like to bring this down to
O(1). The idea is to extract a symmetric key instead of a single bit by
replacing the hardness concentration function with a random oracle.
We can then use the symmetric key to encrypt long message with
constant rate.

The construction is almost identical except that we replace the
hardness concentration bit with a random oracle to extract a symmet-
ric key that can be used to encrypt a long message. Given a trapdoor
function the construction works as follows:

• Gen(1n): Run TDF.Gen(1n) to obtain (s, t). Set pk = s and sk = t.

• Enc(pk, m): Sample x ←$ D(s) and compute y ← f (s, x). Encrypt
m using a symmetric encryption scheme with key H(x) as z ←
Sym.Enc(H(x), m). Output c = (y, z).
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• Dec(sk, c): Parse c = (y, z) and compute x ← f−1(t, y). Decrypt
z using the symmetric encryption scheme with key H(x) as m ←
z⊕ Sym.Dec(H(x), z). Output m.

The same idea can be extended to the CDH based public key encryp-
tion scheme.

Theorem 6.1. The construction above is IND-CPA secure in the random
oracle model assuming f is a trapdoor function.

Proof. Given an adversary A that can win the IND-CPA game, with
non-negligible advantage, we construct an adversary B that can break
either the one-wayness of the trapdoor function or the security of the
with non-negligible advantage.

Let s, y∗ be the challenge given to B(). B provides A with pk :− s.
A outputs (m0, m1) and in response B computes a challenge cipher-
text as follows: Sample b ←$ {0, 1}, a random key k∗ ←$ {0, 1}|B| and
set z∗ ← Sym.Enc(k∗, mb). B also lazily samples responses to random
oracle queries except if a query q satisfies f (s, q) = y∗, then B sets
H(q) = k∗, and outputs q as the inverse image of y∗ under f .

We now argue that A queries the random oracle on an element q
such that f (s, q) = y∗, with non-negligible probability. If this never
occurs, then A never receives receive k∗ but is able to distinguish
symmetric-key encryptions of m0 from encryptions of m1 with non-
negligible probability. This violates the security of the symmetric
encryption scheme. Thus, A must query the random oracle on an
element q such that f (s, q) = y∗ with non-negligible probability and
hence B succeeds with non-negligible probability.

6.6 Fujisaki-Okamoto Transformation

6.7 Kyber Encryption Scheme

6.8 Cramer-Shoup Construction
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Advanced Encryption Schemes

7.1 Identity-Based Encryption

We introduce Bilinear Maps and two of its applications: NIKE, Non-
Interactive Key Exchange; and IBE, Identity Based Encryption.

7.2 Diffie-Hellman Key Exchange

Alice Bob

private a private b

public A public B
A B

send at the same time

a,B → K b,A → K

Eve
Figure 7.1: Diffie-Hellman Key Ex-
change

Fig 7.1 illustrates Diffie-Hellman key exchange. Alice and Bob
each has a private key (a and b respectively), and they want to build
a shared key for symmetric encryption communication. They can
only communicate over a insecure link, which is eavesdropped by
Eve. So Alice generates a public key A and Bob generates a public
key B, and they send their public key to each other at the same time.
Then Alice generates the shared key K from a and B, and likewise,
Bob generates the shared key K from b and A. And we have ∀ PPT
Eve, Pr[k = Eve(A, B)] = neg(k), where k is the length of a.

7.2.1 Discussion 1

Assume that ∀(g, p), and a1, b1
$← Z∗p, and a2, b2, r $← Z∗p, we have

(ga1 , gb1 , ga1b1)
c≃ (ga2 , gb2 , gr). How to apply this to Diffie-Hellman

Key Exchange?
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Make A = ga, B = gb, K = Ab = gab, and K = Ba = gab.

7.2.2 Discussion 2

How does Diffie-Hellman Key Exchange imply Public Key Encryp-
tion?

Alice pk = A, sk = a, Enc(pk, m ∈ {0, 1}).
Bob b, r ← Z∗p (gb, mAb + (1−m)gr)

Alice Dec(sk, (c1, c2))

ca
1

?
= c2

7.3 Bilinear Maps

Definition 7.1. Bilinear Maps
Bilinear Maps is (G, P, GT , g, e), where e is an efficient function

G× G → GT such that

• if g is generator of G, then e(g, g) is the generator of GT .

• ∀a, b ∈ Zp, we have e(ga, gb) = e(g, g)ab = e(gb, ga).

7.3.1 Discussion 1

How does Bilinear Maps apply to Diffie-Hellman?
Make A = ga, B = gb, and T = gab, then Diffie-Hellman has

e(A, B) = e(g, T).

7.4 Tripartite Diffie-Hellman

Fig 7.2 illustrates Tripartite Diffie-Hellman key exchange. a, b, and c
are private key of Alice, Bob, and Carol, respectively. They use ga, gb,
gc as public key, and the shared key K = e(g, g)abc. Formally, we have

a, b, c $← Z∗p, r $← Z∗p

A = ga, B = gb, C = gc

K = e(g, g)abc

7.5 IBE: Identity-Based Encryption

IBE contains four steps: Setup, KeyGen, Enc, and Dec. We illustrate
it in Figure 7.3. In first step, Key authority get a Master Public Key
(MPK) and Master Signing Key (MSK) from Setup(1k). Then a user
with an ID (in this example, “Mike”), sends his ID to the key au-
thority. The key authority generates the Signing Key of Mike with
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A B

Alice

private a

public A

a,B,C → K

Bob

private b

public B

b,A,C → K

Eve

Carol

private c

public C

c,A,B → K

C

Figure 7.2: Tripartite Diffie-Hellman
Key Exchange

KeyGen(MSK, ID) ans sends it back. Another use, Alice, wants to
send an encrypted message to Mike. She only has MPK and Mike’s
ID. So she encrypts the message with c = Enc(MPK, ID = Mike, m),
and sends the encrypted message c to Mike. Mike decodes c with
m = Dec(c, SKMike). Notice that Alice never need to know Mike’s
public key. She only needs to remember MPK and other people’s IDs.

②
iii.

 SK ID
=S

K Mike

Key Authority
①. (MPK, MSK) ← Setup(1k)

Mike

②
i. I

D=M
ike

②ii. SKID ← KeyGen(MSK, ID)

Alice wants to send a 
message to Mike, and 
she only knows MPK.

 ③i. c=Enc(MPK, ID=Mike, m)

 ③ii. c ④. m=Dec(c, SKMike)

Alice

Figure 7.3: Identity-Based Encryption

Formally, we have

Pr


(MPK, MSK)← Setup(1k),

SKID ← KeyGen(MSK, ID),

c← Enc(MPK, ID, m),

m← Dec(SKID, c)

 = 1
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7.5.1 Security Descriptions

We have different security descriptions for IBE, as discussed in this
section.

7.5.2 CCA1

Challenger Adversary

(MPK, MSK)← Setup(1k)
MPK−−−→

ID1←−−

SKID1 ← KeyGen(MSK, ID1)
SKID1−−−→

...
...

...
IDi←−−

SKIDi ← KeyGen(MSK, IDi)
SKIDi−−−→

ID∗ ,m0,m1←−−−−−− ∀i ∈ [q], ID∗ ̸= IDi

b $← {0, 1}, c∗ = Enc(MPK, ID∗, mb)
c∗−→

Output 1 if b′ = b, otherwise 0 b′←−

7.5.3 CCA2

In CCA2, we allow adversary to send further queries after getting c∗.
Challenger Adversary

(MPK, MSK)← Setup(1k)
MPK−−−→

ID1←−−

SKID1 ← KeyGen(MSK, ID1)
SKID1−−−→

...
IDi←−−

SKIDq ← KeyGen(MSK, IDq)
SKIDq−−−→

ID∗ ,m0,m1←−−−−−− ∀i ∈ [q′], ID∗ ̸= IDi

b $← {0, 1}, c∗ = Enc(MPK, ID∗, mb)
c∗−→

IDq+1←−−−

SKIDq+1 ← KeyGen(MSK, IDq+1)
SKIDq+1−−−−→

...
...

...
IDq′←−−

SKIDq′
← KeyGen(MSK, IDq′)

SKIDq′−−−→

Output 1 if b′ = b, otherwise 0 b′←−
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7.5.4 Selective Security

In selective security, the adversary sends ID∗ before everything.
Challenger Adversary

ID∗←−− ∀i ∈ [q], ID∗ ̸= IDi

(MPK, MSK)← Setup(1k)
MPK−−−→

ID1←−−

SKID1 ← KeyGen(MSK, ID1)
SKID1−−−→

...
...

...
IDq←−−

SKIDq ← KeyGen(MSK, IDq)
SKIDq−−−→
m0,m1←−−−

b $← {0, 1}, c∗ = Enc(MPK, ID∗, mb)
c∗−→

Output 1 if b′ = b, otherwise 0 b′←−

7.5.5 Discussion 1

How does Bilinear Maps apply to IBE?
Given Bilinear Maps: (G, P, GT , g, e), we have

1. (G, P, GT , g, e)← Setup(1k)

2. s← Z∗p, and H1 : {0, 1}∗ → G, H2 : GT → {0, 1}n

3. MPK = (G, gs, H1, H2), and MSK = (s)

Let’s look at how we construct each function in IBE.

KeyGen(s, ID):

1. Output SKID = (H1(ID))s

Enc(MPK, ID, m):

1. r ← Z∗p

2. c1 = gr

3. c2 = m⊕ H2(e(A, H1(ID)r)), where A = gs

4. Output (c1, c2)

Dec(SKID, (c1, c2)):

1. Get e(A, H1(ID)r) = e(H1(ID)s, c1) = e(SKID, c1)

2. Get m = c2 ⊕ H2(e(A, H1(ID))r)
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Proof. To prove this, we use a hybrid argument. Assume we have two
oracles with exact random functions, denoted as OH1 and OH2 . One
can request a random string from them with a query ID. The random
strings are denoted as H1(ID) and H2(ID), respectively. These two
oracles keep track of query IDs and corresponding responses. If
a query ID was seen before, they return the exact same response
corresponding to it. If not, they generate a random string, correspond
the string to the ID, and return the string.

We first define H0, in which H1(ID) and H2(ID) are generated by
the oracles. We use the construction described above.

Challenger Adversary
G,ID∗←−−− ∀i ∈ [q], ID∗ ̸= IDi

gs

←−
OH1←−−
OH2←−−
ID1←−−

SKID1 ← KeyGen(s, ID1)
SKID1−−−→

...
...

...
IDq←−−

SKIDq ← KeyGen(s, IDq)
SKIDq−−−→
m0,m1←−−−

b $← {0, 1}, c∗ = Enc(MPK, ID∗, mb)
c∗−→

Output 1 if b′ = b, otherwise 0 b′←−
Then we discard oracle’s H1, and use H1(ID) = gαID , where

αID ← Z∗p. We denote this as H1.
Then we change SKID to SKID = (H1(ID))s = (gαID )s. We denote

this as H2.
We have Bilinear Decision Diffie-Hellman (DDH). If H2 breaks

DDH, then H0 can as well.
In DDH, we have (ga, gb, gc, e(g, g)abc)

c≃ (ga, gb, gc, e(g, g)r). We
denote A = ga, B = gb, C = gc. And in H2, we have A = gs,
B = H1(ID∗), C = c1 = gr. And in c2 = m⊕ H2(e(gs, H1(ID∗))r), we
have T = H2(e(gs, H1(ID∗))r) = e(g, g)abc.
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Proving Computation Integrity

8.1 Commitment Schemes

8.2 Zero-Knowledge Proofs

Traditional Euclidean style proofs allow us to prove veracity of state-
ments to others. However, such proof systems have two shortcom-
ings: (1) the running time of the verifier needs to grow with the
length of the proof, and (2) the proof itself needs to be disclosed to
the verifier. In this chapter, we will provide methods enabling provers
to prove veracity of statements of their choice to verifiers while avoid-
ing the aforementioned limitations. In realizing such methods we
will allow the prover and verifier to be probabilistic and also allow
them to interact with each other.1 1 Formally, they can be modeled as

interactive PPT Turing Machines.

8.3 Interactive Proofs

Definition 8.1. (Interactive Proof System) For a language L we have
an interactive proof system if ∃ a pair of algorithms (or better, interacting
machines) (P ,V), where V is polynomial in |x|, and both can flip coins,
such that:

• Completeness: ∀x ∈ L

Pr
P ,V

[OutputV (P(x)↔ V(x)) = 1] = 1,

• Soundness: ∀x /∈ L, ∀P∗

Pr
V
[OutputV (P∗(x)↔ V(x)) = 1] < neg(|x|),

where OutputV (P(x) ↔ V(x)) denotes the output of V in the interaction
between P and V where both parties get x as input. We stress that P and
P∗ can be computationally unbounded.
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Interactive Proof for Graph Non-Isomorphism (GNI). We say that two
graphs G0 and G1 are isomorphic, denoted G0 ∼= G1, if ∃ an isomor-
phism f : V(G0) → V(G1) s.t. (u, v) ∈ E(G0) iff ( f (u), f (v)) ∈ E(G1),
where V(G) and E(G) are the vertex and edge sets of some graph
G. On the other hand, G0 and G1 are said to be non-isomorphic,
G0 ≇ G1, if ∄ any such f , and GNI = {(G0, G1)| G0 ≇ G1} be the
language that consists of pairs of graphs that are not isomorphic.

GNI is not believed to have short proofs so an interactive proof
could offer a prover a mechanism to prove to a polynomially bounded
verifier that two graphs are non-isomorphic.

The intuition behind a protocol to accomplish the above task is
simple. Consider a verifier that randomly rename the vertices of
one of the graphs and give it to the prover. Can the prover given the
relabeled graph figure out which graph did the verifier start with?
If G0 and G1 were not isomorphic then an unbounded prover can
figure this out. However, in case G0 and G1 are isomorphic then the
distribution resulting form random relabelings of G0 and G1 are
actually identical. Therefore, even an unbounded prover has no way
of distinguishing which graph the verifier started with. So the prover
has only a 1

2 probability of guessing which graph the verifier started
with. Note that by repeating this process we can reduce the success
probability of a cheating prover to negligible. More formally:

• Completeness: If (G0, G1) ∈ GNI, then the unbounded P can
distinguish isomorphism of G0 against those of G1 and can always
return the correct b′. Thus, V will always output 1 for this case.

• Soundness: If (G0, G1) /∈ GNI, then it is equiprobable that H is
a random isomorphism of G0 as it is G1 and so P ’s guess for b′

can be correct only with a probability 1
2 . Repeating this protocol

k times means the probability of guessing the correct b′ for all k
interactions is 1

2k . And so the probability of V outputting 0 (e.g.
rejecting P ’s proof at the first sign of falter) is 1− 1

2k .
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8.4 Zero Knowledge Proofs

Definition 8.2. (NP-Verifier) A language L has an NP-verifier if ∃ a veri-
fier V that is polynomial time in |x| such that:

• Completeness: ∀x ∈ L, ∃ a proo f π s.t. V(x, π) = 1

• Soundness: ∀x /∈ L ∀ purported proof π we have V(x, π) = 0

That is, the conventional idea of a proof is formalized in terms of
what a computer can efficiently verify. So a set of statements consid-
ered true (e.g. in a language L) is complete and sound if a proof can
be written down that can be “easily" and rigorously verified if and
only if a statement is in the language.

Efficient Provers. Unfortunately (fortunately?), there aren’t real-life
instances of all-powerful provers that we know of. And for cryp-
tography we must make more reasonable assumptions about the
provers. In this case we will assume provers are also bounded to be
efficient.

Previously, if a prover wanted to prove that two graphs, G0 and
G1 were isomorphic, it would use its all-powerfulness to find the iso-
morphic mapping between the two graphs and give it to the verifier
to complete the proof. But now, being computationally bounded,
the prover is in the same boat as the verifier and can find a proof
no better than the verifier can. In order for the prover to be able to
prove something that the verifier cannot find out on their own, the
prover must have some extra information. If, for example, the prover
simply knew the isomorphism between the graphs, this would be
the sufficient extra information it needs to enact the proof. That’s a
rather boring proof though. We have interaction now! Can’t we do
something fancier?

What if the prover wanted to prove that two graphs were isomor-
phic but didn’t want to fully reveal the isomorphism that they know.
If they’re lying and don’t know an isomorphism is their a way we can
exploit them again?

When G0 and G1 are isomorphic, the isomorphism between them
would be a witness, w, to that fact, that can be used in the proof.
Unfortunately, the prover is being stubborn and won’t just tell us that
isomorphism, w : V(G0) → V(G1), that they claim to have. The
prover is comfortable however giving us a “scrambled" version, ϕ, of
w as long as it doesn’t leak any information about their precious w.
For example, the prover is willing to divulge ϕ = π ◦ w where π is
a privately chosen random permutation of |V| = |V(G0)| = |V(G1)|
vertices. Since π renames vertices completely randomly, it scrambles
what w is doing entirely and ϕ is just a random permutation of |V|



92 a course in theory of cryptography

elements. At this point, we might be a little annoyed at the prover
since we could have just created a random permutation on our own.
This might give us an idea on how to gain a little more information
however, even though we gained none here:

If we want to be convinced that ϕ really is of the form π ◦ w, thus
containing w in its definition, and isn’t just a completely random
permuation, we can note that if it is of that form then ϕ(G0) =

π(w(G0)) = π(G1) (since w being an isomorphism implies that
w(G0) = G1). Note that we started with a mapping on input G0

and ended with a mapping on input G1. With an isormphism, one
could get from one graph to the other seamlessly; if the prover re-
ally has the isomorphism it claims to have, then it should have no
problem displaying this ability. So, what if we force the prover to
give us H = π(G1) just after randomly choosing its π and then
let it show us its ability to go from G1 to G0 with ease: give us a ϕ

so that ϕ(G0) = π(G1) = H. The only way the prover can give a
mapping that jumps from G0 to G1 in such a way is if they know
an isomorphism; if the prover could find a ϕ efficiently but did not
know an isomorphism then they would have been able to see that
π−1(ϕ(G0)) = G1 and thus have π−1 ◦ ϕ as an isomorphism from
G0 to G1, which would contradict the assumed hardness of finding
isomorphisms in the GI problem. So by forcing the prover to give us
H as we’ve defined and to produce a ϕ so that ϕ(G0) = H, we’ve
found a way to expose provers that don’t really have an isomorphism
and we can then be convinced that they really do know w when they
pass our test. And the prover didn’t directly tell us w, so they may be
able to salvage some secrecy!

But not everything is airtight about this interaction. Why, for in-
stance, would the prover be willing to provide H = π(G1) when
they’re trying to divulge as little information as possible? The prover
was comfortable giving us ϕ since we could have just simulated
the process of getting a completely random permutation of vertices
ourselves, but couldn’t the additional information of H reveal infor-
mation about w? At this point, the annoyed feeling may return as
we realize that, H = π(G1) = π′(G0), for some π′, is just a random
isomorphic copy of G0 and G1 as long as G0 ∼= G1; we could have
just chosen a random π′, set H = π′(G0), and let ϕ = π′ and would
have created our very own random isomorphic copy, H, of G1 that
satisfies our test condition H = ϕ(G0) just like what we got from our
interaction with the prover. We couldn’t have gained any new infor-
mation from the prover because we could have run the whole test on
our own!

Well, something must be wrong; we couldn’t have been convinced
of something without gaining any new information. Indeed, the test
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has a hole in it: how can we force the prover to give us H = π(G1)

like we asked? If the prover is lying and it knows our test condition
is to verify that H = ϕ(G0), the prover might just cheat and give us
H = π(G0) so it doesn’t have to use knowledge of w to switch from
G1 to G0. And, in fact, by doing this and sending ϕ = π, the prover
would fool us!

To keep the prover on their toes, though, we can randomly switch
whether or not we want H to equal ϕ(G0) or ϕ(G1). If, in our inter-
action, the prover must first provide their H = π(G1) before we let
them know which we want, they then lock themselves into a commit-
ment to either G0 or G1 depending on whether they’re trying to cheat
or not, respectively. They only have a 50% chance of committing to
the same case we want on a given round and so, if they don’t have w
to deftly switch between G0 and G1 to always answer correctly, they
again have to be an extremely lucky guesser if they’re trying to lie.

Again, we’ve created an interactive scheme that can catch dishon-
est provers with probability 1- 1

2k and where we always believe honest
provers!

• Completeness: If (G0, G1) ∈ GI and P knows w, then whether
V chooses b = 0 or 1, P can always give the correct ϕ which, by
definition, will always result in H = ϕ(Gb) and so V will always
output 1.

• Soundness: If (G0, G1) /∈ GI, then P can only cheat, as discussed
earlier, if the original H it commits to ends up being π(Gb) for
the b that is randomly chosen at the next step. Since b isn’t even
chosen yet, this can only happen by chance with probability 1

2 .
And so the probability V outputs 0 is 1− 1

2k for k rounds.

And so, again, we’ve correctly captured the idea of a proof by
having this interaction. But there’s a strange feeling that may be
lingering around us...
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As a verifier, we’ve seen some things in interacting with the prover.
Surely, clever folks like ourselves must be able to glean some informa-
tion about w after seeing enough to thoroughly convince us that the
prover knows w. We’ve first seen H, and we’ve also seen the random
b that we chose, along with ϕ at the end; this is our whole view of
information during the interaction. But we’re more bewildered than
annoyed this time when we realize we could have always just chosen
b and ϕ randomly and set H = ϕ(Gb) on our own. Again, everything
checks out when G0 ∼= G1 and we could have produced everything
that we saw during the interaction before it even began. That is,
the distribution of the random variable triple (H, b, ϕ) is identical
whether it is what we saw from the prover during the interaction
or it is yielded from the solitary process we just described. We’ve
just constructed a complete interactive proof system that entirely
convinces us of the prover’s knowledge of w, yet we could have sim-
ulated the whole experience on our own! We couldn’t have gain any
knowledge about w since we didn’t see anything we couldn’t have
manufactured on own, yet we are entirely convinced that (G0, G1) ∈
GI and that P knows w! And so the prover has proven something to
us yet has given us absolutely zero additional knowledge!

This may feel very surprising or as if you’ve been swindled by a
fast talker, and it very much should feel this way; it was certainly
an amazing research discovery! But this is true, and it can be made
rigorous:

We should first be sure what we want out of this new proof sys-
tem. We of course want it to be complete and sound so that we ac-
cept proofs iff they’re true. But we also want the verifier to gain zero
knowledge from the interaction; that is, the verifier should have been
able to simulate the whole experience on its own without the verifier.
Finally, we would also like all witnesses to a true statement to each
be sufficient to prove the veracity of that statement and so we let R be
the relation s.t. x ∈ L iff ∃ a witness w s.t. (x, w) ∈ R. We can then
gather all witness by defining R(x) to be the set of all such witnesses.

Definition 8.3. (Honest Verifier Zero Knowledge Proof [HVZK]) For
a language L we have a (perfect) HVZK proof system w.r.t. witness relation
R if ∃ an interactive proof system, (P ,V) s.t. ∃ a PPT machine S (called
the simulator) s.t. ∀x ∈ L, ∀w ∈ R(x) the following distributions are
identical:

ViewV (P(x, w)↔ V(x))

S(x)

where ViewV (P(x, w) ↔ V(x)) is the random coins of V and all the mes-
sages V saw.
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Remark 8.1. In the above definition, ViewV (P(x, w) ↔ V(x)) contains
both the random coins of V and all the messages that V saw, because they to-
gether constitute the view of V , and they are correlated. If the random coins
of V are not included in the definition of ViewV (P(x, w) ↔ V(x)), then
even if S can generate all messages that V saw with the same distribution
as in the real execution, the verifier may still be able to distinguish the two
views using its random coins.

There is an interesting progression of the requirements of a proof
system: Completeness, Soundness, and the Zero Knowledge prop-
erty. Completeness first cares that a prover-verifier pair exist and
can capture all true things as a team that works together; they both
honestly obey the protocol trying prove true statements. Soundness,
however, assumes that the prover is a liar and cares about having a
strong enough verifier that can stand up to any type of prover and
not be misled. Finally, Zero Knowledge assumes that the verifier is
hoping to glean information from the proof to learn the prover’s se-
crets and this requirement makes sure the prover is clever enough
that it gives no information away in its proof.

Unlike the soundness’ requirment for a verifier to combat all mali-
cious provers, HVZK is only concerned with the verifier in the orig-
inal prover-verifier pair that follows the set protocol. Verifiers that
stray from the protocol or cheat, however, are captured in the natural
generalization to Zero Knowledge proofs.

Definition 8.4 (Efficient Prover Zero-Knowledge Proof). We say (P, V)

is an efficient prover zero-knowledge proof system for a language L and
relation RL if

1. The prover P runs in polynomial time.

2. The protocol is complete. That is, for every x ∈ L there exists a witness
w ∈ RL(x) such that

Pr[P(x, w)↔ V(x) accepts] = 1.

3. The protocol is sound against unbounded provers. That is, for ∀x /∈ L,
we have

Pr[P∗(x, w)↔ V(x) rejects] ≥ 1/2

for any prover P∗ of arbitrary computation power and any witness w.

4. There exists an expected polynomial time probabilistic machine S (a simu-
lator) such that for all PPT V∗, for all x ∈ L, w ∈ RL(x), z ∈ {0, 1}∗ we
have

{ViewV∗(P(x, w)↔ V∗(x, z))} ≃c {SV∗(x, z)}

The soundness probability can be amplified to be greater than any
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1− 1/2k, for arbitrary k > 0, by repeating the proof k times. More
precisely, we construct an efficient prover zero-knowledge proof
system (P̃, Ṽ) which repeats (P, V) independently for k times, and Ṽ
accepts if and only if V accepts in all the executions.

It is easy to see that P̃ runs in polynomial time and that the proto-
col is complete. Moreover, it has the following soundness guarantee:
for ∀x /∈ L,

Pr
[
P̃∗(x, w)↔ Ṽ(x) rejects

]
=1− Pr [∀1 ≤ i ≤ k, P∗i (x, w)↔ V(x) accepts]

=1−
k

∏
i=1

Pr [P∗i (x, w)↔ V(x) accepts]

≥1− 1
2k

for any prover P̃∗ = (P∗1 , · · · , P∗k ) of arbitrary computation power and
any witness w.

Finally, it is zero-knowledge, namely, there exists an expected PPT
S̃ such that for all PPT Ṽ∗, and for all x ∈ L, w ∈ RL(x), z ∈ {0, 1}∗,{

ViewṼ∗(P̃(x, w)↔ Ṽ∗(x, z))
}
≃c

{
S̃Ṽ∗(x, z)

}
.

The construction of S̃ is repeating S for k times. We prove by hybrid
argument that the above two distributions are indistinguishable. Hi

is defined to be the output of repeating S for the first i executions
with Ṽ∗ and repeating P for the rest k − i executions. Then H0 is
the left distribution and Hk is the right one. Any attacher that can
distinguish the above two distributions leads to an attacker that can
distinguish Hi−1 and Hi for some 1 ≤ i ≤ k, which violates the
zero-knowledge property of the original proof system (P, V).

The order of the quantifiers in item 4 matters. If we quantify over
x and w before quantifying over the simulator, then we could hard-
code x and w into our simulator. That is, for all x ∈ L, w ∈ RL(x),
there exists an expected polynomial time probabilistic machine Sx,w

such that for all PPT V∗ and z ∈ {0, 1}∗,

{ViewV∗(P(x, w)↔ V∗(x, z))} ≃c {SV∗
x,w(x, z)}

Since we would like our simulator to be universal, this is not accept-
able.

If we quantify first over the verifier V∗ and then over simulators
S, then this variant is considered as non-black-box zero-knowledge. Our
standard definition is considered as black-box zero-knowledge. There
also exist variants that use statistical indistinguishability rather than
computational indistinguishability.
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The z in item 4 is considered as auxiliary input. The auxiliary input
is crucial for the above argument of soundness amplification.

We will discuss the importance of requiring expected polynomial
time in the next section.

8.5 Graph Isomorphism

Recall our protocol for graph isomorphism: the interaction is P(x, w)↔
V(x) where x represents graphs G0 = (V, E0) and G1 = (V, E1) and
w represents a permutation π on V such that π(G0) = G1.

1. P samples a random permutation σ : V → V and sends the graph
H = σ(G1) to V.

2. V samples a random bit b and sends it to P.

3. If b = 1, then P defines a permutation τ to be σ. If b = 0, then
instead τ = σ ◦ π. P then sends τ to V.

4. V verifies that τ(Gb) = H and accepts if so.

We will show that this is an efficient prover zero-knowledge proof
system. It is clear that if G0 and G1 are isomorphic, then this protocol
will succeed with probability 1.

For soundness, observe that if G0 is not isomorphic to G1, then the
graph H that P sends to V in step 1 of the protocol can be isomorphic
to at most one of G0 or G1. Since V samples a bit b uniformly at
random in step 2, then there is a probability of at most 1/2 that P can
produce a valid isomorphism in step 3.

For zero knowledge, consider the following simulator S with input
G0 and G1 (with vertex set V) and verifier V∗:

1. Guess a bit b uniformly at random.

2. Sample a permutation π : V → V uniformly at random and send
π(Gb) to V∗.

3. Receive b′ form V∗.

4. If b = b′, then output (π(Gb), b, π) and terminate. Otherwise,
restart at step 1.

Note that if G0 ≃ G1, then π(Gb) is statistically independent of b
because b and π are sampled uniformly. Thus, with probability 1/2,
V∗ will output b so on average, two attempts will be needed before
S terminates. It follows that S will terminate in expected polynomial
time.
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Since b is sampled uniformly at random, π(Gb) is uniformly dis-
tributed with all graphs of the form σ(G1) where σ is sampled uni-
formly at random from permutations on V. Thus, the output π(Gb)

in our simulator will be identically distributed with the output H in
our graph isomorphism protocol.

In step 3 of our graph isomorphism protocol, note that τ is dis-
tributed uniformly at random. This is because composing a uni-
formly random permutation with a fixed permutation will not
change its distribution. Thus τ will be identically distributed with π

in our simulator. It follows that the transcripts outputted by our sim-
ulator will be identically distributed with the transcripts produced by
the graph isomorphism protocol.

8.6 Zero-Knowledge for NP

An n-coloring of a graph G = (A, E) is a function c : A → {1, . . . , n}
such that if (i, j) ∈ E, then c(i) ̸= c(j). So we want to paint each
vertex of a graph a certain color so that the endpoints of any edge are
colored differently.

In the graph 3-coloring problem (3COL), we are given a graph and
asked if there exists a 3-coloring. In this section, we will provide a
computational zero knowledge proof for 3COL. It is a fact that 3COL
is NP-complete, so any problem in NP has a polynomial time reduc-
tion to 3COL. Thus, by giving a zero knowledge proof for 3COL, we
will show that there are zero knowledge proofs for all of NP.

We will first give a high-level description of a zero-knowledge
protocol for 3COL. Suppose a prover P wants to convince a verifier
V that his graph G is 3-colorable without revealing what the coloring
c actually is. If the three colors we use are red, green, and blue, then
note that if we colored all the red vertices blue, all the green vertices
red, and all the blue vertices green, we would still have a valid 3-
coloring. In fact, if ϕ was any permutation on the color set of red,
green, and blue, then ϕ ◦ c would be a valid 3-coloring of G.

P asks V to leave the room and then samples a random permu-
tation ϕ of the three colors. He colors the vertices of G according to
ϕ ◦ c, then covers all the vertices with cups. At this point, P invites V
back into the room. V is allowed to pick one edge and then uncover
the two endpoints of the edge. If the colors on the two endpoints are
the same, then V rejects P’s claim that the graph is 3-colorable.

If the colors on the two endpoints are different, then V leaves the
room again, P samples ϕ randomly, and the process repeats itself.
Certainly if G is actually 3-colorable, then V will never reject the
claim. If G is not 3-colorable, then there will always be an edge with
endpoints that are colored identically and V will eventually uncover
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such an edge.
Note that V does not gain any information on the coloring because

it is masked by a (possibly) different random permutation every time
V uncovers an edge. Of course this protocol depends on P not being
able to quickly recolor the endpoints of an edge after removing the
cups. This is why we need commitment schemes.

8.6.1 Commitment Schemes

We want to construct a protocol between a sender and a receiver
where the sender sends a bit to the receiver, but the receiver will not
know the value of this bit until the sender chooses to "open" the data
that he sent. Of course, this protocol is no good unless the receiver
can be sure that the sender was not able to change the value of his bit
in between when the receiver first obtained the data and when the
sender chose to open it.

Definition 8.5. A commitment scheme is a PPT machine C taking input
(b, r) that satisfies two properties:

• (perfect binding) For all r, s, we have C(0, r) ̸= C(1, s).

• (computational hiding) {C(0, Un)} ≃c {C(1, Un)}

So for the sender to "open" the data, he just has to send his value
of r to the receiver. We say that r is a decommitment for C(x, r). Why
do we require perfect binding instead of just statistical binding? If
there existed even a single pair r, s where C(0, r) = C(1, s), then the
sender could cheat. If he wished to reveal a bit value of 0 then he
could just offer r and if he wished to reveal a bit value of 1 then he
could just offer s.

We can use injective one-way functions to construct commitment
schemes.

Theorem 8.1. If injective one-way functions exist, then so do commitment
schemes.

Proof. We can let f be an injective one-way function. Recall from
Lecture 3 that f ′(x, r) := ( f (x), r) will also be an injective one-
way function with hard-core bit B(x, r) := ⟨x, r⟩. We claim that
C(b, x, r) := ( f ′(x, r), b⊕ B(x, r)) is a commitment scheme.

If (x, r) ̸= (y, s) then C(0, x, r) ̸= C(0, y, s) because f ′ is injective.
Since C(0, x, r) = ( f ′(x, r), B(x, r)) ̸= ( f ′(x, r), B(x, r)) = C(1, x, r),
then C satisfies perfect binding.

Suppose D can distinguish C(0, Un) from C(1, Un). Then we can
distinguish B(x, r) from B(x, r) given f ′(x, r) which contradicts the
fact that B(x, r) is a hard-core bit for f ′(x, r). Thus, C has the compu-
tational hiding property.
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We can extend the definition of commitment schemes to hold
for messages longer than a single bit. These commitment schemes
will work by taking our commitment schemes for bits and concate-
nating them together. For the extended definition, we require that
for any two messages m0 and m1 of the same length, the ensembles
{C(m0, Un)} and {C(m1, Un)} are computationally indistinguishable.

8.6.2 3COL Protocol

Below we describe the protocol P(x, z) ↔ V(x), where x describes a
graph G = ({1, . . . , n}, E) and z describes a 3-coloring c:

1. P picks a random permutation π : {1, 2, 3} → {1, 2, 3} and defines
the 3-coloring β := π ◦ c of G. Using a commitment scheme C for
the messages {1, 2, 3}, P defines αi = C(β(i), Un) for each i ∈ V. P
sends α1, α2, . . . , αn to V.

2. V uniformly samples an edge e = (i, j) ∈ E and sends it to P.

3. P opens αi and αj.

4. V will accept only if it received valid decommitments for αi and αj,
and if β(i) and β(j) are distinct and valid colors.

It is clear that this protocol is PPT. If G is not 3-colorable, then
there will be at least a 1/|E| probability that V will reject P’s claim in
step 4. Since |E| ≤ n2 we can repeat the protocol polynomially many
times to increase the rejection probability to at least 1/2.

We will now show that this protocol is zero-knowledge. We de-
scribe a simulator S below, given a verifier V∗:

1. Sample an edge e = (i, j) ∈ E uniformly at random.

2. Assign ci and cj to have distinct values from {1, 2, 3} and do so
uniformly at random. Set ck := 1 for all k ̸= i, j.

3. Compute n random keys r1, . . . , rn and set αi = C(ci, ri) for all i.

4. Let e′ ∈ E be the response of V∗ upon receiving α1, . . . , αn.

5. If e′ ̸= e, then terminate and go back to step 1. Otherwise, proceed.
If S returns to step 1 more than 2n|E| times, then output fail and
halt the program.

6. Print α1, . . . , αn, e, send ri and rj to V∗ and then print whatever V∗

responds with.

By construction, S will run in polynomial time. However, some-
times it may output a fail message. We will show that this occurs
with negligible probability.
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Suppose that for infinitely many graphs G, V∗ outputs e′ = e
in step 4 with probability less than 1/2|E|. If this is true, then it is
possible for us to break the commitment scheme C that we use in
S. Consider a modified version of S called S̃, where in step 2 we set
ci = 1 for all i. Note that in this case, V∗ cannot distinguish between
any of the edges so the probability that it returns e′ = e is 1/|E|.

If we gave V∗ a set of commitments αk = C(1, rk) for random keys
rk, then we would be in the setting of S̃. If we gave V∗ the commit-
ments αk but with two of the values set to C(c, r) and C(c′, r′) where
c, c′ are distinct random values from {1, 2, 3} and r, r′ are random
keys, then we are in the setting of S. This implies that it possible to
distinguish between these two commitment settings with a proba-
bility of at least 1/2|E| which is non-negligible. It follows that V∗

outputs e′ = e with probability less than 1/2|E| for only finitely many
graphs G.

Thus, the probability that S outputs fail in the end is less than
(1− 1/2|E|)2n|E| < 1/en which is negligible.

Now we need to argue that the transcripts generated by S are
computationally indistinguishable from the transcripts generated
by P ↔ V∗. Again, we consider a modified version of S, called
S′, given a 3-coloring of its input G as auxiliary input. In step 2 of
the simulation, S′ will choose a random permutation of the colors
in its valid 3-coloring for the values of ci rather than setting all but
two values ci and cj equal to 1. Note that this is how our protocol
between P and V behaves.

Observe that P ↔ V∗ is computationally indistinguishable from S′

because S′ outputs fail with negligible probability. Thus, it suffices to
show that S and S′ are computationally indistinguishable. Again, we
will suppose otherwise and argue that as a result we can distinguish
commitments.

We consider two messages m0 and m1 of the same length where
m0 consists of n − 2 instances of the message 1 and two committed
colors ci and cj (for a random edge (i, j) ∈ E) and m1 consists of
a committed random 3-coloring of G (with a random edge (i, j) ∈
E) chosen. Observe that by feeding the former message to V∗ we
are in the setting of S′ and by feeding the latter message to V∗ we
are in the setting of S. If we could distinguish those two settings,
then we could distinguish the commitments for m0 and m1. This
contradiction completes our argument that our 3-coloring protocol is
zero-knowledge.
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8.7 NIZK Proof Systems

We now consider a different class of Zero-Knowledge proof sys-
tems, where no interaction is required: The Prover simply sends
one message to the Verifier, and the Verifier either accepts or rejects.
Clearly for this class to be interesting, we must have some additional
structure: both the Prover and Verifier additionally have access to a
common random public string σ (trusted to be random by both). For
example, they could derive σ by looking at sunspot patterns.

8.8 Definitions

Definition 8.6 (NIZK Proof System). A NIZK proof system for in-
put x in language L, with witness ω, is a set of efficient (PPT) algorithms
(K, P, V) such that:

1. Key Generation: σ← K(1k) generates the random public string.

2. Prover: π ← P(σ, x, ω) produces the proof.

3. Verifier: V(σ, x, π) outputs {0, 1} to accept/reject the proof.

Which satisfies the completeness, soundness, and zero-knowledge properties
below.

Note: We will assume throughout that x is of polynomially-bounded
length, i.e., we are considering the language L ∩ {0, 1}P(k).

Completeness. ∀x ∈ L, ∀ω ∈ RL(x):

Pr[σ← K(1k), π ← P(σ, x, ω) : V(σ, x, π) = 1] = 1.

Non-Adaptive Soundness. ∀x ̸∈ L:

Pr[σ← K(1k) : ∃ πstV(σ, x, π) = 1] = negl(k).

The above definition is “non-adaptive", because it does not allow a
cheating prover to decide which statement to prove after seeing the
randomness σ. We may also consider the stronger notion of “adap-
tive soundness", where the prover is allowed to decide x after seeing
σ:

Adaptive Soundness.

Pr[σ← K(1k) : ∃ (x, π)stx ̸∈ L, V(σ, x, π) = 1] = negl(k).

(Non-Adaptive) Zero-Knowledge. The exists a PPT simulator S such
that ∀x ∈ L, ω ∈ RL(x), the two distributions are computationally
indistinguishable:
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1. σ← K(1k)

2. π ← P(σ, x, ω)

3. Output (σ, π)

1. (σ, π)← S(1k, x)

2. Output (σ, π)

That is, the simulator is allowed to generate the distribution of
randomness σ together with π. Note that if we did not allow S to
produce σ, this definition would be trivial (a verifier could convince
himself by running the simulator, instead of interacting with P).
Allowing S to generate σ still keeps the definition zero-knowledge
(since a verifier sees both (σ, π) together), but puts P and S on un-
equal footing.

We could also consider the adaptive counterpart, where a cheating
verifier can choose x after seeing σ:

(Adaptive) Zero-Knowledge. The exists a PPT simulator split into
two stages S1, S2 such that for all PPT attackers A, the two distribu-
tions are computationally indistinguishable:

1. σ← K(1k)

2. (x, ω)← A(σ), s.t. (x, ω) ∈ RL

3. π ← P(σ, x, ω)

4. Output (σ, x, π)

1. (σ, τ)← S1(1k)

2. (x, ω)← A(σ)

3. π ← S2(σ, x, τ)

4. Output (σ, x, π)

where τ should be thought of as local state stored by the simulator
(passed between stages).

Now we show that adaptive soundness is not harder to achieve
than non-adaptive soundness.

Theorem 8.2. Given a NIZK (K, P, V) that is non-adaptively sound, we
can construct a NIZK that is adaptively sound.

Proof. For x0 ̸∈ L, let us call a particular σ “bad for x0" if there exists
a false proof for x0 using randomness σ: ∃ πstV(σ, x0, π) = 1. By
non-adaptive soundness of (K, P, V), we have Prσ[σ bad for x0] =

negl(k).
Now we construct a new NIZK (K′, P′, V′) by repeating (K, P, V)

polynomially-many times (using fresh randomness, and V′ accepts if
and only if V accepts in each iteration). We can ensure that negl(k) ≤
2−2P(k). Now by union bound:

Pr[σ← K′(1k) : ∃ (x, π)stV′(σ, x, π) = 1] ≤ 2P(k) ·Pr
σ
[σ bad for x0] ≤ 2−P(k).

So this new NIZK is adaptively-sound.
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8.9 Trapdoor One-Way Permutation

Definition 8.7 (Trapdoor One-Way Permutation). A trapdoor one-way
permutation is a collection of one-way permutations { fi : Di → Di}i∈I

where Di ⊂ {0, 1}|i| with five properties.

1. ∃ PPT G such that G(1k) outputs (i, ti) where i ∈ I ∩ {0, 1}k

2. It is easy to sample from Di given i

3. fi is easy to compute but hard to invert

4. fi is a permutation

5. ∃ PPT A such that A(i, y, ti) ∈ f−1
i (y)

When fi is a one-way trapdoor permutation, it is a one-way per-
mutation with the property that it is easy to compute f−1

i only if
given access to trapdoor information ti. The function G is PPT and
computes this trapdoor information. The function A is PPT and in-
verts fi using this trapdoor information.

8.9.1 RSA

RSA is the only known example of a trapdoor one-way permutation.
It relies on the assumption that factoring numbers is hard, but testing
primality is easy. (It is known that testing primality can be done
deterministically in polynomial time. It is believed that factoring can
not be done in polynomial time, however this has not been proven.
The best factoring algorithms are sub-exponential though.)

Definition 8.8. RSA defines the functions (G, F, A) as follows.

G(1k) = ((N, e), d) where N = pq, for primes p, q,

gcd(e, ϕ(N)) = 1

d = e−1 (mod ϕ(N))

FN,e(x) = xe (mod N)

A((N, e), y, d) = yd (mod N)

The function G randomly selects the values of (p, q, e) to satisfy the
desired properties. We note that if e were not coprime to ϕ(N), then
the function would not be a permutation.

The function ϕ is Euler’s Totient, and when p, q are primes, ϕ(pq) =
(p− 1)(q− 1). (That is, ϕ is the order of the multiplicative group ZN .)

The trapdoor piece of information is the multiplicative inverse of
e modulo the order of the group. It is believed hard to compute this
information given only the integer N.
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It is easy to show correctness of this scheme:

A(i, Fi(x), ti) = (xe)d = x (mod N)

We leave it as an exercise that RSA is semantically secure with no
additional assumptions.

8.10 NIZK in the Hidden-Bit Model

The hidden-bit model is a variant of the common-reference-string
NIZK, where the prover can selectively reveal only parts of the ran-
dom string to the verifier. (Imagine clouds obscuring the random
string in the sky from the verifier, and the prover can choose which
clouds to clear.)

Definition 8.9 (NIZK in the Hidden-Bit Model). A NIZK in the
hidden-bit model for statement x (with witness ω) is efficient algorithms
(KH , PH , VH) such that:

1. r ← KH(1k) generates the hidden random string (ℓ-bits).

2. (I, ϕ) ← PH(r, x, ω) generates the indices I ⊆ [ℓ] to reveal, and the
proof ϕ.

3. VH(I, {ri}i∈I , x, ϕ) accepts or rejects, given the indices I, the random
string r at indices I, statement x, and proof ϕ.

Which satisfies the completeness, soundness, and zero-knowledge properties
as previously defined.

Theorem 8.3. Given a NIZK (PH , VH) in the hidden-bit model, we can
construct a NIZK (P, V) in the normal model using trapdoor one-way
permutations.

Proof. Let the common-reference-string σ in the normal model be of
length kℓ and partition it into ℓ blocks of k-bits each: σ = σ1 . . . σℓ. Let
F be a family of 2k trapdoor OWPs, and let B(·) be the correspond-
ing hard-core bit. We may assume the soundness error of (PH , VH)

(that is, the probability of r allowing a fake proof) is at most 2−2k, by
the same repetition argument as in Theorem 8.2. The protocol for the
normal (P, V) is:

Prover P(σ, x, ω):

1. Sample trapdoor OWP: ( f , f−1)← F (1k).

2. Let αi = f−1(σi) for ∀i ∈ [ℓ].

3. Compute hidden-bit ri = B(αi) for ∀i ∈ [ℓ]. Let r := r1 · · · rℓ.
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4. Run the HBM prover: (I, ϕ)← PH(r, x, ω).

5. Send ( f , I, {αi}i∈I , ϕ) to verifier.

Verifier V(σ, x, f , I, {αi}i∈I , ϕ):

1. Confirm f ∈ F , and f (αi) = σi ∀i ∈ I.

2. Compute the revealed bits ri = B(αi) ∀i ∈ I.

3. Output VH(I, {ri}i∈I , x, ϕ).

Intuitively, σi hides ri because σi
f← αi

B→ ri, so by security of the
hard-core bit, the verifier cannot find ri = B(αi) from σi = f (αi).

Notice that if the prover is honest, then αi will be distributed uni-
formly random as well (since f−1 is a permutation), and ri will be
unbiased as well (since B(·) is a hard-core bit). So this reduces ex-
actly to the HBM distributions, and completeness of this protocol is
clear (from completeness of (PH , VH)).

For soundness: for a fixed f = f0, the distribution of ri is uni-
formly random, so by the soundness of (PH , VH) we have

Pr
σ
[P∗ can cheat using f0] ≤ 2−2k

However, a cheating P∗ may be able to cleverly pick f to influence
ri, allowing him to cheat. Since we know there are only 2k possible
choices of f (the verifier confirms f is properly sampled), we can use
the union bound to prove soundness:

Pr
σ
[ ∃ some f ∈ F s.t. P∗ can cheat] ≤ 2−k.

Note that more serious problems can occur if V does not confirm
f ∈ F . For example, if f is not a permutation, then f−1(σi) can be
multi-valued, and the prover can choose to “explain" σi using either
αi or α′i – which is a problem if B(αi) ̸= B(α′i).

To prove zero-knowledge, we construct a sequence of prover-
hybrids. Differences from the previous hybrid are in red:

H0 (normal model)

1. σ1 . . . σℓ = σ
$←− {0, 1}kℓ

2. ( f , f−1)← F

3. αi = f−1(σi) ∀i ∈ [ℓ]

4. ri = B(αi) ∀i ∈ [ℓ]

5. (I, ϕ)← PH(r, x, ω)

6. Output (σ, f , I, {αi}i∈I , ϕ)
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H1

1. ( f , f−1)← F

2. αi
$← {0, 1}k ∀i ∈ [ℓ]

3. σi = f (αi) ∀i ∈ [ℓ]

4. ri = B(αi) ∀i ∈ [ℓ]

5. (I, ϕ)← PH(r, x, ω)

6. Output (σ, f , I, {αi}i∈I , ϕ)

In H1, we sample αi uniformly at random and then generate σi (in-
stead of sampling σi and then generating αi). This induces an exactly
identical distribution, since f is a permutation.

H2

1. ( f , f−1)← F

2. ri
$← {0, 1} ∀i ∈ [ℓ]

3. αi
$← B−1(ri) ∀i ∈ [ℓ]

4. σi = f (αi) ∀i ∈ [ℓ]

5. (I, ϕ)← PH(r, x, ω)

6. Output (σ, f , I, {αi}i∈I , ϕ)

In H2, we again switch the sampling order: first sample the (un-
biased) bit ri, then sample αi from the pre-image of ri (which can
be done efficiently by simply trying random αi’s until B(αi) = ri).
This distribution is exactly identical to H1. (The sampling order
can be thought of as factoring the joint distribution: Pr(αi, ri) =

Pr(ri)Pr(αi|ri))

H3

1. ( f , f−1)← F

2. ri
$← {0, 1} ∀i ∈ [ℓ]

3. αi
$← B−1(ri) ∀i ∈ [ℓ]

4. σi = f (αi) ∀i ∈ I

5. σi
$← {0, 1}k ∀i ̸∈ I

6. (I, ϕ)← PH(r, x, ω)
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7. Output (σ, f , I, {αi}i∈I , ϕ)

In H3, we only generate σi honestly for i ∈ I, and output random σi

for i ̸∈ I. To argue that this is computational indistinguishable from
H2, first notice that for a fixed (known) bit r,

{ f (B−1(r)}IND{ f (B−1(r)} (8.1)

where the randomness is over sampling the pre-image B−1. Distin-
guishing the above distributions is by definition equivalent to guess-
ing the hard-core bit, so they are indistinguishable. Given the above,
we can further argue that

{ f (B−1(r)}INDUk (8.2)

where Uk is uniform over {0, 1}k. To see this, notice that Uk can be
equivalently generated by first sampling a random bit b, then out-
putting f (B−1(b)), since f is a permutation. Therefore, any distin-
guisher for (8.2) can also be used to distinguish (8.1) with at least as
much distinguishing-advantage (in fact, twice as much). Finally, (8.2)
justifies swapping σi = f (αi) = f (B−1(ri)) with random for i ̸∈ I in
hybrid H3.

H4

1. ( f , f−1)← F

2. (I, {ri}i∈I , ϕ)← SH(1k, x)

3. αi
$← B−1(ri) ∀i ∈ I

4. σi = f (αi) ∀i ∈ I

5. σi
$← {0, 1}k ∀i ̸∈ I

6. Output (σ, f , I, {αi}i∈I , ϕ)

Finally, H4 simply swaps the hidden-bit prover PH for the hidden-bit
simulator SH , which is indistinguishable by the zero-knowledge
property of (PH , VH). So (P, V) is a NIZK system in the normal
model.

8.11 NIZK in the Hidden-Bit Model for Graph Hamiltonian

Definition 8.10. A Hamiltonian cycle in a graph is a cycle that visits each
vertex exactly once. A Hamiltonian graph is a graph that contains a Hamil-
tonian cycle. More precisely, given a graph G = (V, E) with |V| = n, we
say that G is a Hamiltonian graph if there are x1, . . . , xn ∈ V such that
they are all distinct vertices, and ∀i ∈ {1, . . . , n − 1} : (xi, xi+1) ∈ E,
(xn, x1) ∈ E.
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It is well known that the problem of determining if a graph is
Hamiltonian is NP-complete. Here we will construct a NIZK proof
in the hidden-bit model (HBM) that is able to prove that a graph is
Hamiltonian.

First we define how graphs are represented as matrices.

Definition 8.11. A graph G = (V, E) with |V| = n, can be represented
as an n × n adjacency matrix MG of boolean values such that MG[i, j] ={

1 if (i, j) ∈ E,
0 otherwise.
A cycle matrix is a matrix which corresponds to a graph that contains a

Hamiltonian cycle and contains no edges other than this cycle.
A permutation matrix is a boolean matrix such that each row and each

column has exactly one entry equal to 1.

Figure 8.1: Cycle matrix.

Figure 8.2: Permutation matrix.

Every cycle matrix is a permutation matrix, but the converse is not
true. For each size n, there are n! different permutation matrices but
only (n− 1)! cycle matrices.

In Figure 8.1, one can see the cycle matrix as a cycle (1, 4, 7, 6, 8, 5, 3, 2)
on the set {1, 2, 3, 4, 5, 6, 7, 8}. In Figure 8.2, it is possible to interpret
the matrix as a permutation (1)(2, 8, 6, 5)(3, 7, 4) on the same set.

Theorem 8.4. There is a non-interactive zero-knowledge (NIZK) proof
in the hidden-bit model (HBM) for the problem of proving that a graph is
Hamiltonian.
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Proof. In the hidden-bit model (HBM), there is a random string r
with ℓ bits that the prover can read. The prover should be able to
produce a proof ϕ and choose a set I ⊆ {1, 2, . . . , ℓ} such that the
proof and the bits of the string corresponding to the set I will be
revealed to the verifier.

Let the graph be G = (V, E) with |V| = n. The objective is to con-
vince the verifier that the assertion is correct (the graph G is Hamilto-
nian).

Suppose that the random string r comes from a distribution such
that this string represents the entries from an n× n cycle matrix Mc.
Then a proof can be produced as follows.

Since the prover P knows the Hamiltonian cycle x1, . . . , xn in G, he
can find a function ϕ : V → {1, 2, . . . , n} that puts the Hamiltonian
cycle exactly over the cycle of Mc. More precisely, for this function
we have Mc[ϕ(xi), ϕ(xi+1)] = 1 for each edge (xi, xi+1) in the Hamil-
tonian cycle of G (we view indices modulo n). This means that all
the edges of Mc will be covered by edges of G. Conversely, all the
non-edges of G must be taken to non-edges of Mc.

So the strategy for the prover is to reveal the mapping ϕ and also
reveal entries of Mc corresponding to ϕ(e) where e /∈ E. More
precisely, for the set I = {(ϕ(u), ϕ(v)) | (u, v) /∈ E}, P reveals
Mc[ϕ(u), ϕ(v)] = 0, which proves that (ϕ(u), ϕ(v)) is a non-edge of
Mc.

Figure 8.3: Graph matrix that includes a
Hamiltonian cycle. Edges are blue/red
and the cycle is red. White cells are
non-edges.

A visual example is shown in Figure 8.3. The cycle graph Mc given
by the random string corresponds to the red cells. These cells have
value 1 in the matrix Mc and all other cells have value 0. The prover
P provides a bijection ϕ that maps the edges of G to this matrix in
such a way that all red cells are covered and some others may also be
covered (blue cells). The important property guaranteed is that all the
non-edges of G are mapped to cells that have a value 0 in the matrix
(white cells).



proving computation integrity 111

This proof satisfies the three properties required for a zero knowl-
edge proof.

Completeness: if P and V are both honest, then P will be able to
convince V that the statement is true. That’s because P knows the
Hamiltonian cycle of G, hence he is always able to produce the map-
ping ϕ.

Soundness: if P is lying and trying to prove a false statement, then
he will get caught with probability 1. If P does not know any Hamil-
tonian cycle in G, then any function ϕ he chooses will not cover all
the edges in Mc. Hence there will be an entry in the matrix Mc which
is one and will be revealed as a non-edge of G.

Zero Knowledge: V cannot get any information besides the fact that
P knows a Hamiltonian cycle in G. A simulator S for this proof can
be simply a machine that generates a random permutation ϕ : V →
{1, 2, . . . , n} and reveals zeros for all the non-edges of ϕ(G).

In this proof we assumed that the random string r comes from a
very specific distribution that corresponds to cycle matrices. Now
we need to show that the general problem (where r comes from
a random uniform distribution of ℓ bits) can be reduced into this
previous scenario.

We proceed as follows. Let the length of the random string be
ℓ = ⌈3 · log2 n⌉ · n4. We view the random string r as n4 blocks of
⌈3 · log2 n⌉ bits and we generate a random string r′ of length n4 such
that each bit in r′ is 1 if and only if all the bits in the corresponding
block of r are equal to 1. This way, the probability that the i-th bit of
r′ equals 1 is Pr[r′i = 1] ≈ 1

n3 for every i.
Then we create an n2 × n2 matrix M whose entries are given by

the bits of r′. Let x be the number of one entries in the matrix M. The
expected value for x is n4

n3 = n. And the probability that x is exactly n
is noticeable. To prove that, we can use Chebyshev’s inequality:

Pr[|x− n| ≥ n] ≤ σ2

n2 =
n4 · 1

n3 ·
(

1− 1
n3

)
n2 <

1
n

.

So we have Pr[1 ≤ x ≤ 2n− 1] > n−1
n . And the probability Pr[x = k]

is maximal for k = n, so we conclude that Pr[x = n] > n−1
n(2n−1) >

1
3n .

Now suppose that this event (x = n) occurred and we have exactly
n entries equal to 1 in matrix M. What is the probability that those n
entries are all in different rows and are all in different columns?

We can think about the problem this way: after k one entries have
been added to the matrix, the probability that a new entry will be in

a different row and different column is given by
(

1− k
n2

)2
. Multiply-

ing all these values we get
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Pr[no collision] ≥
(

1− 1
n2

)2
·
(

1− 2
n2

)2
· · ·
(

1− n− 1
n2

)2

> 1− 2
(

1
n2 +

2
n2 + · · ·+ n− 1

n2

)
= 1− n− 1

n
=

1
n

.

Now assume that this event happened: the matrix M has exactly
n entries equal to 1 and they are all in different rows and different
columns. Then we can define a new n × n matrix Mc by select-
ing only those n rows and n columns of M. By construction, Mc is
a permutation matrix. The probability that Mc is a cycle matrix is
(n−1)!

n! = 1
n . An example is shown in Figures 8.4 and 8.5.

Figure 8.4: Matrix M which is n2 × n2

for n = 8.

Figure 8.5: Matrix Mc which is n × n
for n = 8. The construction worked,
because Mc is a cycle matrix.

Now let’s join all those probabilities. The probability that Mc is a
cycle matrix is at least

1
3n
· 1

n
· 1

n
>

1
3n3 .
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If we repeat this process n4 times, then the probability that Mc is a
cycle matrix in at least one iteration is at least

1−
(

1− 1
3n3

)n4

≈ 1− e−
n
3 = 1− negl(n).

The proof system works as follows. Given a random string r, the
prover P tries to execute the construction above to obtain a cycle
matrix. If the construction fails, the prover simply reveals all the
bits in the string r to the verifier, who checks that the constructions
indeed fails. If the construction succeeds, the prover reveals all the
entries in the random string r that correspond to values in the matrix
M which are not used in matrix Mc. The verifier will check that all
these values for matrix M are indeed 0.

Then the prover proceeds as in the previous scenario using matrix
Mc: he reveals the transformation ϕ and opens all the non-edges.

This process is repeated n4 times. Or, equivalently, a big string of
length ⌈3 · log2 n⌉ · n4 · n4 is used and they are all executed together.
This produces a zero knowledge proof.

Completeness: if P knows the Hamiltonian cycle of G, then he will
be able to find a suitable transformation ϕ whenever a cycle graph is
generated by the construction.

Soundness: if P is lying and trying to prove a false statement, then
he will get caught with very high probability. If any of the n4 itera-
tions produces a cycle graph, then P will be caught. So the probabil-
ity that he will be caught is 1− e−

n
3 = 1− negl(n).

Zero Knowledge: again V cannot get any information if the con-
struction succeeds. And if the construction doesn’t succeed, all V gets
is the random string r, which also doesn’t give any information.

Theorem 8.5. For any language L in NP, there is a non-interactive zero-
knowledge (NIZK) proof in the hidden-bit model (HBM) for the language
L.

Proof. The language L∗ of Hamiltonian graphs is NP-complete. So
any problem in L can be reduced to a problem in L∗. More precisely,
there is a polynomial-time function f such that

x ∈ L⇐⇒ f (x) ∈ L∗.

So given an input x, the prover can simply calculate f (x) and pro-
duce a NIZK proof in the hidden-bit model for the fact that f (x) ∈
L∗. Then the verifier just needs to calculate f (x) and check if the
proof for the fact f (x) ∈ L∗ is correct.

Theorem 8.6. For any language L in NP, there is a non-interactive zero-
knowledge (NIZK) proof in the common reference string (CRS) model for the
language L.
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Proof. In Theorem 8.3 it was shown that any NIZK proof in the
hidden-bit model can be converted into a NIZK proof in the stan-
dard (common reference string) model by using a trapdoor permuta-
tion.

8.12 zkSNARKs

Exercises

Exercise 8.1 (Leaky ZK proof). Formally define:

1. What it means for an interactive proof (P, V) to be first-bit leaky zero-
knowledge, where we require that the protocol doesn’t leak anything more
than the first bit of the witness.

2. What it means for an interactive proof (P, V) to be one-bit leaky zero-
knowledge, where we require that the protocol doesn’t leak anything
more than one bit that is an arbitrary adversarial chosen function of the
witness.

Exercise 8.2 (Proving OR of two statements). Give a statistical zero-
knowledge proof system Π = (P, V) (with efficient prover) for the following
language.

L =
{
((G0, G1), (G′0, G′1))

∣∣∣G0 ≃ G1
∨

G′0 ≃ G′1
}

Caution: Make sure the verifier doesn’t learn which of the two pairs of
graphs is isomorphic.

Exercise 8.3 (ZK implies WI). Let L ∈ NP and let (P, V) be an interac-
tive proof system for L. We say that (P, V) is witness indistinguishable
(WI) if for all PPT V∗, for all x ∈ L, distinct witnesses w1, w2 ∈ RL(x)
and auxiliary input z ∈ {0, 1}∗, the following two views are computation-
ally indistinguishable:

ViewV∗ (P(x, w1)↔ V∗(x, z)) ≃c ViewV∗ (P(x, w2)↔ V∗(x, z)) .

1. Show that if (P, V) is an efficient prover zero-knowledge proof system,
then it is also witness indistinguishable.

2. Assume (P, V) is an efficient prover zero-knowledge proof system. We
have seen in the exercise that (P, V) is also witness indistinguishable.
Define (P̃, Ṽ) to repeat (P, V) independently for k times in parallel
(k is a polynomial), and Ṽ accepts if and only if V accepts in all the
executions. Prove that (P̃, Ṽ) is still witness indistinguishable.

Exercise 8.4. Multi-statement NIZK. The NIZK proof system we con-
structed in class required a fresh common random string (CRS) for each
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statement proved. In various settings we would like to reuse the same ran-
dom string to prove multiple theorem statements while still preserving the
zero-knowledge property.

A multi-statement NIZK proof system (K, P, V) for a language L with
corresponding relation R is a NIZK proof system for L with a stronger zero-
knowledge property, defined as follows: ∃ a PPT machine S = (S1,S2) such
that ∀ PPT machines A1 and A2 we have that:∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



σ← K(1κ),

({xi, wi}i∈[q], state)← A1(σ),

such that ∀i ∈ [q], (xi, wi) ∈ R

∀i ∈ [q], πi ← P(σ, xi, wi);

A2(state, {πi}i∈[q]) = 1


− Pr



(σ, τ)← S1(1κ),

({xi, wi}i∈[q], state)← A1(σ),

such that ∀i ∈ [q], (xi, wi) ∈ R

∀i ∈ [q], πi ← S2(σ, xi, τ);

A2(state, {πi}i∈[q]) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(κ).

Assuming that a single statement NIZK proof system (K, P, V) for NP
exists, construct a multi-statement NIZK proof system (K′, P′, V′) for NP.

Hint: Let g : {0, 1}κ → {0, 1}2κ be a length doubling PRG. Let K′

output the output of K along with y, a random 2κ bit string. To prove x ∈ L
the prover P′ proves that ∃(w, s) such that either (x, w) ∈ R or y = g(s).





9
Secure Computation

9.1 Introduction

Secure multiparty computation considers the problem of different
parties computing a joint function of their separate, private inputs
without revealing any extra information about these inputs than that
is leaked by just the result of the computation. This setting is well
motivated, and captures many different applications. Considering
some of these applications will provide intuition about how security
should be defined for secure computation:

Voting: Electronic voting can be thought of as a multi party compu-
tation between n players: the voters. Their input is their choice
b ∈ {0, 1} (we restrict ourselves to the binary choice setting with-
out loss of generality), and the function they wish to compute is
the majority function.

Now consider what happens when only one user votes: their input
is trivially revealed as the output of the computation. What does
privacy of inputs mean in this scenario?

Searchable Encryption: Searchable encryption schemes allow clients
to store their data with a server, and subsequently grant servers
tokens to conduct specific searches. However, most schemes do not
consider access pattern leakage. This leakage tells the server po-
tentially valuable information about the underlying plaintext. How
do we model all the different kinds information that is leaked?

From these examples we see that defining security is tricky, with
lots of potential edge cases to consider. We want to ensure that no
party can learn anything more from the secure computation protocol
than it can from just its input and the result of the computation. To
formalize this, we adopt the real/ideal paradigm.
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9.2 Real/Ideal Paradigm

Notation. Suppose there are n parties, and party Pi has access to
some data xi. They are trying to compute some function of their
inputs f (x1, . . . , xn). The goal is to do this securely: even if some
parties are corrupted, no one should learn more than is strictly neces-
sitated by the computation.

Real World. In the real world, the n parties execute a protocol Π to
compute the function f . This protocol can involve multiple rounds of
interaction. The real world adversary A can corrupt arbitrarily many
(but not all) parties.

Ideal World. In the ideal world, an angel helps in the computation of
f : each party sends their input to the angel and receives the output of
the computation f (x1, . . . , xn). Here the ideal world adversary S can
again corrupt arbitrarily many (but not all) parties.

To model malicious adversaries, we need to modify the ideal
world model as follows. Some parties are honest, and each honest
party Pi simply sends xi to the angel. The other parties are corrupted
and are under control of the adversary S . The adversary chooses an
input x′i for each corrupted party Pi (where possibly x′i ̸= xi) and that
party then sends x′i to the angel. The angel computes a function f of
the values she receives (for example, if only party 1 is honest, then
the angel computes f (x1, x′2, x′3, . . . , x′n)) in order to obtain a tuple
(y1, . . . , yn). She then sends yi of corrupted parties to the adversary,
who gets to decide whether or not honest parties will receive their
response from the angel. The angel obliges. Each honest party Pi then
outputs yi if they receive yi from the angel and ⊥ otherwise, and
corrupted parties output whatever the adversary tells them to.

Definition of Security. A protocol Π is secure against computationally
bounded adversaries if for every PPT adversary A in the real world,
there exists an PPT adversary S in the ideal world such that for all
tuples of bit strings (x1, . . . , xn), we have

RealΠ,A(x1, . . . xn)
c≃ IdealF,S (x1, . . . , xn)

where the left-hand side denotes the output distribution induced
by Π running with A, and the right-hand side denotes the output
distribution induced by running the ideal protocol F with S . The
ideal protocol is either the original one described for semi-honest
adversaries, or the modified one described for malicious adversaries.
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Assumptions. We have brushed over some details of the above set-
ting. Below we state these assumptions explicitly:

1. Communication channel: We assume that the communication
channel between the involved parties is completely insecure, i.e.,
it does not preserve the privacy of the messages. However, we
assume that it is reliable, which means that the adversary can drop
messages, but if a message is delivered, then the receiver knows
the origin.

2. Corruption model: We have different models of how and when
the adversary can corrupt parties involved in the protocol:

• Static: The adversary chooses which parties to corrupt before
the protocol execution starts, and during the protocol, the mali-
cious parties remain fixed.

• Adaptive: The adversary can corrupt parties dynamically during
the protocol execution, but the simulator can do the same.

• Mobile: Parties corrupted by the adversary can be “uncor-
rupted” at any time during the protocol execution at the ad-
versary’s discretion.

3. Fairness: The protocols we consider are not “fair”, i.e., the ad-
versary can cause corrupted parties to abort arbitrarily. This can
mean that one party does not get its share of the output of the
computation.

4. Bounds on corruption: In some scenarios, we place upper bounds
on the number of parties that the adversary can corrupt.

5. Power of the adversary: We consider primarily two types of ad-
versaries:

• Semi-honest adversaries: Corrupted parties follow the protocol
execution Π honestly, but attempt to learn as much information
as they can from the protocol transcript.

• Malicious adversaries: Corrupted parties can deviate arbitrarily
from the protocol Π.

6. Standalone vs. Multiple execution: In some settings, protocols
can be executed in isolation; only one instance of a particular pro-
tocol is ever executed at any given time. In other settings, many
different protocols can be executed concurrently. This can compro-
mise security.
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9.3 Oblivious transfer

Rabin’s oblivious transfer sets out to accomplish the following special
task of two-party secure computation. The sender has a bit s ∈ {0, 1}.
She places the bit in a box. Then the box reveals the bit to the receiver
with probability 1/2, and reveals ⊥ to the receiver with probability
1/2. The sender cannot know whether the receiver received s or ⊥,
and the receiver cannot have any information about s if they receive
⊥.

9.3.1 1-out-of-2 oblivious transfer

1-out-of-2 oblivious transfer sets out to accomplish the following related
task. The sender has two bits s0, s1 ∈ {0, 1} and the receiver has a
bit c ∈ {0, 1}. The sender places the pair (s0, s1) into a box, and the
receiver places c into the same box. The box then reveals sc to the
receiver, and reveals ⊥ to the sender (in order to inform the sender
that the receiver has placed his bit c into the box and has been shown
sc). The sender cannot know which of her bits the receiver received,
and the receiver cannot know anything about s1−c.

Lemma 9.1. A system implementing 1-out-of-2 oblivious transfer can be
used to implement Rabin’s oblivious transfer.

Proof. The sender has a bit s. She randomly samples a bit b ∈ {0, 1}
and r ∈ {0, 1}, and the receiver randomly samples a bit c ∈ {0, 1}.
If b = 0, the sender defines s0 = s and s1 = r, and otherwise, if
b = 1, she defines s0 = r and s1 = s. She then places the pair (s0, s1)

into the 1-out-of-2 oblivious transfer box. The receiver places his bit
c into the same box, and then the box reveals sc to him and ⊥ to the
sender. Notice that if b = c, then sc = s, and otherwise sc = r. Once
⊥ is revealed to the sender, she sends b to the receiver. The recieiver
checks whether or not b = c. If b = c, then he knows that the bit
revealed to him was s. Otherwise, he knows that the bit revealed to
him was the nonsense bit r and he regards it as ⊥.

It is easy to see that this procedure satisfies the security require-
ments of Rabin’s oblivious transfer protocol. Indeed, as we saw
above, sc = s if and only if b = c, and since the sender knows b,
we see that knowledge of whether or not the bit sc received by the
receiver is equal to s is equivalent to knowledge of c, and the security
requirements of 1-out-of-2 oblivious transfer prevent the sender from
knowing c. Also, if the receiver receives r (or, equivalently, ⊥), then
knowledge of s is knowledge of the bit that was not revealed to him
by the box, which is again prevented by the security requirements of
1-out-of-2 oblivious transfer.
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Lemma 9.2. A system implementing Rabin’s oblivious transfer can be used
to implement 1-out-of-2 oblivious transfer.

Proof sketch. The sender has two bits s0, s1 ∈ {0, 1} and the re-
ceiver has a single bit c. The sender randomly samples 3n random
bits x1, . . . , x3n ∈ {0, 1}. Each bit is placed into its own a Rabin obliv-
ious transfer box. The ith box then reveals either xi or else ⊥ to the
receiver. Let

S := {i ∈ {1, . . . , 3n} : the receiver knows xi}.

The receiver picks two sets I0, I1 ⊆ {1, . . . , 3n} such that #I0 = #I1 =

n, Ic ⊆ S and I1−c ⊆ {1, . . . , 3n} \ S. This is possible except with prob-
ability negligible in n. He then sends the pair (I0, I1) to the sender.
The sender then computes tj =

(⊕
i∈Ij

xi

)
⊕ sj for both j ∈ {0, 1} and

sends (t0, t1) to the receiver.
Notice that the receiver can uncover sc from tc since he knows xi

for all i ∈ Ic, but cannot uncover s1−c. One can show that the security
requirement of Rabin’s oblivious transfer implies that this system
satisfies the security requirement necessary for 1-out-of-2 oblivious
transfer.

We will see below that length-preserving one-way trapdoor per-
mutations can be used to realize 1-out-of-2 oblivious transfer.

Theorem 9.1. The following protocol realizes 1-out-of-2 oblivious transfer
in the presence of computationally bounded and semi-honest adversaries.

1. The sender, who has two bits s0 and s1, samples a random length-
preserving one-way trapdoor permutation ( f , f−1) and sends f to the
receiver. Let b(·) be a hard-core bit for f .

2. The receiver, who has a bit c, randomly samples an n-bit string
xc ∈ {0, 1}n and computes yc = f (xc). He then samples another
random n-bit string y1−c ∈ {0, 1}n, and then sends (y0, y1) to the
sender.

3. The sender computes x0 := f−1(y0) and x1 := f−1(y1). She computes
b0 := b(x0) ⊕ s0 and b1 := b(x1) ⊕ s1, and then sends the pair (b0, b1)

to the receiver.

4. The receiver knows c and xc, and can therefore compute sc = bc ⊕ b(xc).

Proof. Correctness is clear from the protocol. For security, from the
sender side, since f is a length-preserving permutation, (y0, y1) is
statistically indistinguishable from two random strings, hence she
can’t learn anything about c. From the receiver side, guessing s1−c

correctly is equivalent to guessing the hard-core bit for y1−c.
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9.3.2 1-out-of-4 oblivious transfer

We describe how to implement a 1-out-of-4 OT using 1-out-of-2 OT:

1. The sender, P1 samples 5 random values Si ← {0, 1}, i ∈ {1, . . . , 5}.

2. P1 computes

α0 = S0 ⊕ S2 ⊕m0

α1 = S0 ⊕ S3 ⊕m1

α2 = S1 ⊕ S4 ⊕m2

α3 = S1 ⊕ S5 ⊕m3

It sends these values to P2.

3. The parties engage in 3 1-out-of-2 Oblivious Transfer protocols for
the following messages: (S0, S1), (S2, S3), (S4, S5). THe receiver’s
input for the first OT is the first choice bit, and for the second and
third ones is the second choice bit.

4. The receiver can only decrypt one ciphertext.

9.4 Yao’s Garbled Circuit

9.5 Setup

Yao’s Garbled Circuits is presented as a solution to Yao’s Million-
aires’ problem, which asks whether two millionaires can compete for
bragging rights of which is richer without revealing their wealth to
each other. It started the area of secure computation. We will present
a solution for the two party problem; it can be extended to a polyno-
mial number of parties, using the techniques from last lecture.

The solution we saw previously needed an interaction for each
AND gate. Yao’s solution requires only one message, so it provides
a constant size of interaction. We present a solution only for semi
honest security. This can be amplified to malicious security, but there
are more efficient ways of amplifying this than what we saw last
lecture.

9.5.1 Secure Computation

Recall our definition of secure computation. We define ideal and
real worlds. Security is defined to hold if anything an attacker can
achieve in the real world can also be achieved by an ideal attacker in
the ideal world. We define the ideal world to have the properties that
we desire. For security to hold these properties must also hold in the
real world.
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9.5.2 (Garble,Eval)

We will provide a definition, similar to how we define encryption,
that allows us avoid dealing with simulators all the time.

Yao’s Garbled Circuit is defined as two efficient algorithms (Garble,Eval).
Let the circuit C have n input wires. Garble produces the garbled cir-
cuit and two labels for each input wire. The labels are for each of 0

and 1 on that wire and are like encryption keys.

(C̃, {ℓi,b}i∈[n],b∈{0,1})← Garble(1k, C)

To evaluate the circuit on a single input we must choose a value
for each of the n input wires. Given n of 2n input keys, Eval can
evaluate the circuit on those keys and get the circuit result.

C(x)← Eval(C̃, {ℓi,xi}i∈[n])

Correctness Correctness is as usual, if you garble honestly, evaluation
should produce the correct result.

∀C, xPr[C(x) = Eval(C̃, {li,xi}), (C̃, {ℓi,b}) = Garble(1k, C)] = 1−neg(k)

Security For security we require that a party receiving a garbled cir-
cuit and n inputs labels can not computationally distinguish the joint
distribution of the circuits and labels from the distribution produced
by a simulator with access to the circuit and its evaluation on the in-
put that the labels represent. The simulator does not have access to
the actual inputs. If this holds, the party receiving the garbled circuit
and n labels can not determine the inputs.

∃Sim : ∀C, x

(C̃, {ℓi,xi}i∈[n]) ≃ Sim(1k, C, C(x)) where

(C̃, {ℓi,b}i∈[n],b∈{0,1})← Garble(1k, C)

For simplicity we pass the circuit to the simulator. You could also
use universal circuits and pass in with the inputs the specific circuit
that the universal circuit should realize.

9.6 Use for Semi-honest two party secure communication

Alice, with input x1, and Bob, with input x2, have a circuit, C, that
they want to evaluate securely. The size of their combined inputs is n,
so |x1| = n1, |x2| = n− n1, |x1|+ |x2| = n. They can do this by Alice
garbling a circuit and sending input wire labels to Bob, as in Figure
9.1.
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Alice garbles the circuit and passes it to Bob, C̃. Alice passes the
labels for her input directly to Bob, {ℓi,x1

i
}i∈[n]/[n2]

. Alice passes all
the labels for Bob’s input wires into oblivious transfer, {ℓi,bi

}i∈[n]/[n1],b∈{0,1},
from which Bob can retrieve the labels for his actual inputs, {ℓi,x2

i
}i∈[n]/[n1]

.
Bob now has the garbled circuit and one label for each input wire.
He evaluates the garbled circuit on those garbled inputs and learns
C(x1||x2). Bob does not learn anything besides the result as he has
only the garbled circuit and n garbled inputs. Alice does not learn
anything as she uses oblivious transfer to give Bob his input labels
and receives nothing in reply.

Alice: C, x1

(C̃, {ℓi,b})← Garble

Bob: C, x2

C̃−→
S0

out is 0 , S1
out is 1

−−−−−−−−−−−−→

{ℓi,x1
i
}i∈[n]/[n2]

−−−−−−−−−→

OTℓi,1

ℓi,0 {ℓi,x2
i
}i∈[n]/[n1]

∀i ∈ [n]/[n1]−−−−−−−−→

Figure 9.1: Messages in Yao’s Garbeled
Circuit

9.6.1 Construction of Garbled Circuits

We would like to garble a circuit such that there are two keys for
each input wire. Correctness should be that given one of the two
keys for each wire we can compute the output for the inputs those
keys correspond to. Security should be that given one key for each
wire you can only learn the output, not the actual inputs.

We build the circuit as a bunch of NAND gates that outputs one
bit. If more bits are required, this can be done multiple times. NAND
gates can create any logic needed. We define the following sets:

W = the set of wires in the circuit

G = the set of gates in the circuit.

For each wire in the circuit, sample two keys to label the possible
inputs 0 and 1 to the wire

∀w ∈W S0
w, S1

w ← {0, 1}k.
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We can think of these as the secret keys to an encryption scheme
(Gen, Enc, Dec). For such a scheme we can always replace the secret
key with the random bits fed into Gen.

Wires For each wire in the circuit we will have an invariant that
the evaluator can only get one of the wires two encrypted values.
Consider an internal wire fed by the evaluation of a gate. The gate
receives two encrypted values as inputs and produces one encrypted
output. The output will be one of the two labels for that wire and the
evaluator will have no way of obtaining the other label for that wire.
For example on wire wi, the evaluator will only learn the value for 1,
S1

wi
. We ensure this for the input wires by giving the evaluator only

one of the two encrypted values for the wire.

Gates For every gate in the circuit we create four cipher texts. For
each choice of inputs we encrypt the output key under each of the
input keys. Let gate g have inputs w1, w2 and output w3,

e00
g = EncS0

w1
(EncS0

w2
(S1

w3
, 0k))

e01
g = EncS0

w1
(EncS1

w2
(S1

w3
, 0k))

e10
g = EncS1

w1
(EncS0

w2
(S1

w3
, 0k))

e11
g = EncS1

w1
(EncS1

w2
(S0

w3
, 0k)).

We add k zeros at the end.

Final Output For the final output wire, Sout, we can just give out
their values,

S0
out corresponds to 0

S1
out corresponds to 1.

C̃ For each gate, Alice sends Bob a random permutation of the set
of four encrypted output values.

{eC1,C2
g } ∀g ∈ G C1, C2 ∈ {0, 1}.

For each gate, Alice sends Bob a random permutation of the set of
four encrypted output values

Evaluation With an encrypted gate g, input keys Sw1 Sw2 for the
input wires, and four randomly permuted encryptions of the output
keys, ea

g, eb
g, ec

g, ed
g, Bob can evaluate the gate to find the corresponding

key Sw3 for the output wire. Bob can decrypt each of the encrypted
output keys until he finds one that decrypts to a string ending in
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the proper number of 0’s, which is very likely to contain the proper
output key. We can increase the probability of the correct key by
increasing the number of 0’s.

∃i ∈ {a, b, c, d} : DecSw2
(DecSw1

(ei
g)) = Sw3 , 0k

Given input wire labels {ℓi,xi}i∈[n] the complete encrypted circuit
C̃ is evaluated by working up from the input gates.

The evaluator should not be able to infer anything except what
they could infer in the ideal world. As a simple example, if the eval-
uator supplies one input to a circuit of just one NAND gate, they
would be able to infer the input of the other party. However, this is
true is the ideal world as well.

9.7 Proof Intuition

What intuition can we offer that the distribution of C̃ with one label
per input wire is indistinguishable from what which a simulator
could produce with access to the output? For each input wire we
are only given one key. As we are doing double encryption, for each
input gate we only have the keys needed to decrypt one of the four
possible outputs. The other three are protected by semantic security.
So from each input gate we learn only one key compounding to
its output wire. As the output labels were randomized, we also do
not know if that key corresponds to a 0 or a 1. For the next level of
gates we again have only one key per input wire, and our argument
continues. So for each wire of the circuit we can only know one key
corresponding to an output value for the wire. Everything else is
random garbage. As we control the mapping from output keys to
output values, we can set this to whatever is needed to match the
expected output.

Security only holds for evaluation of the circuit with one set of
input values and we assume that the circuit is combinatorial and thus
acyclic.

9.8 Malicious attacker intead of semi-honest attacker

The assumption we had before consisted of a semi-honest attacker
instead of a malicious attacker. A malicious attacker does not have
to follow the protocol, and may instead alter the original protocol.
The main idea here is that we can convert a protocol aimed at semi-
honest attackers into one that will work with malicious attackers.

At the beginning of the protocol, we have each party commit to its
inputs: Given a commitment protocol com, Party 1 produces
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c1 = com(x1; w1)

d1 = com(r1; ϕ1)

Party 2 produces

c2 = com(x2; w2)

d2 = com(r2; ϕ2)

We have the following guarantee: ∃xi, ri, wi, ϕi such that ci =

com(xi; wi) ∧ di = com(ri; ϕi) ∧ t = π(i, transcript, xi, ri), where
transcript is the set of messages sent in the protocol so far.

Here we have a potential problem. Since both parties are choosing
their own random coins, we have to be able to enforce that the coins
are indeed random. We can solve this by using the following protocol:

d1 = com(s1; ϕ1)
-

d2 = com(s2; ϕ2)
�

s
′
2

-
s
′
1

�

We calculate r1 = s1 ⊕ s
′
1, and r2 = s2 ⊕ s

′
2. As long as one party

is picking the random coins honestly, both parties would have truly
random coins.

Furthermore, during the first commitment phase, we want to make
sure that the committing party actually knows the value that is being
committed to. Thus, we also attach along with the commitment a
zero-knowledge proof of knowledge (ZK-PoK) to prove that the
committing party knows the value that is being committed to.

9.8.1 Zero-knowledge proof of knowledge (ZK-PoK)

Definition 9.1 (ZK-PoK). Zero-knowlwedge proof of knowledge (ZK-
PoK) is a zero-knowledge proof system (P, V) with the property proof of
knowledge with knowledge error κ:
∃ a PPT E (knowledge extractor) such that ∀x ∈ L and ∀P∗ (possibly

unbounded), it holds that if Pr[OutV(P∗(x, w)↔ V(x))] > κ(x), then

Pr[EP∗(x) ∈ R(x)] ≥ Pr[OutV(P∗ ↔ V(x))] = 1]− κ(x).

Here we have L be the language, R be the relation, and R(x) is the set such
that ∀w ∈ R(x), (x, w) ∈ R.

Given a zero-knowledge proof system, we can construct a ZK-PoK
system for statement x ∈ L with witness w as follows:
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P V

r ← {0, 1}|w|
c1 = com(r; ω)
c2 = com(r⊕ w; ϕ)

-

b
�

if b = 0, open c1 to reveal r
else open c2 to reveal r⊕ w

-

ZK Proof

The last ZK proof proves that ∃r, w, ω, ϕ such that (x, w) ∈ R and
c1 = com(r; ω), c2 = com(r⊕ w; ϕ).

Exercises

Exercise 9.1. Given a (secure against malicious adversaries) two-party
secure computation protocol (and nothing else) construct a (secure against
malicious adversaries) three-party secure computation protocol.
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Obfustopia

10.1 Witness Encryption: A Story

Imagine that a billionaire who loves mathematics, would like to
award with 1 million dollars the mathematician(s) who will prove the
Riemann Hypothesis. Of course, neither does the billionaire know if
the Riemann Hypothesis is true, nor if he will be still alive (if and)
when a mathematician will come up with a proof. To overcome these
couple of problems, the billionaire decides to:

1. Put 1 million dollars in gold in a big treasure chest.

2. Choose an arbitrary place of the world, dig up a hole, and hide the
treasure chest.

3. Encrypt the coordinates of the treasure chest in a message so that
only the mathematician(s) who can actually prove the Riemann
Hypothesis can decrypt it.

4. Publish the ciphertext in every newspaper in the world.

The goal of this lecture is to help the billionaire with step 3. To
do so, we will assume for simplicity that the proof is at most 10000

pages long. The latter assumption implies that the language

L = {x such that x is an acceptable Riemann Hypothesis proof}

is in NP and therefore, using a reduction, we can come up with a
circuit C that takes as input x and outputs 1 if x is a proof for the
Riemann Hypothesis and 0 otherwise.

Our goal now is to design a pair of PPT machines (Enc, Dec) such
that:

1. Enc(C, m) takes as input the circuit C and m ∈ {0, 1} and outputs a
ciphertext e ∈ {0, 1}∗.
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2. Dec(C, e, w) takes as input the circuit C, the cipertext e and a wit-
ness w ∈ {0, 1}∗ and outputs m if if C(w) = 1 or ⊥ otherwise.

and so that they satisfy the following correctness and security
requirements:

• Correctness: If ∃w such that C(w) = 1 then Dec(C, e, w) outputs m.

• Security: If ∄w such that C(w) = 1 then Enc(C, 0) ≈c Enc(C, 1)
(where ≈c means “computationally indistinguishable”).

10.2 A Simple Language

As a first example, we show how we can design such an encryption
scheme for a simple language. Let G be a group of prime order and
g be a generator of the group. For elements A, B, T ∈ G consider the
language L = {(a, b) : A = ga, B = gb, T = gab}. An encryption
scheme for that language with the correctness and security require-
ments of Section 10.1 is the following:

• Encryption(g, A, B, T, G):

– Choose elements r1, r2 ∈ Z∗p uniformly and independently.

– Let c1 = Ar1 gr2 , c2 = gmTr1 Br2 , where m ∈ {0, 1} is the message
we want to encrypt.

– Output c = (c1, c2)

• Decryption(b):

– Output c2
cb

1

Correctness: The correcntess of the above encryption scheme
follows from the fact that if there exist (a, b) ∈ L then:

c2

cb
1

=
gmTr1 Br2

(Ar1 gr2)b

=
gm
(

gab
)r1
(

gb
)r2

(ga)r1b gr2b

= gm

Since m ∈ {0, 1} and we know g, the value of gm implies the value
of m.

Security: As far as the security of the scheme is concerned, since L
is quite simple, we can actually prove that m is information-theoretically
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hidden. To see this, assume there does not exist (a, b) ∈ L, but an ad-
versary has the power to compute discrete logarithms. In that case,
given c1 and c2 the adversary could get a system of the form:

ar1 + r2 = s1

m + rr1 + br2 = s2

where s1 and s2 are the discrete logarithms of c1 and c2 respectively
(with base g), and r ̸= ab is an element of Z∗p such that T = gr.
Observe now that for each value of m there exist numbers r1 and
r2 so that the above system has a solution, and thus m is indeed
information-theoretically hidden (on the other hand, if we had that
ab = r then the equations are linearly dependent).
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10.3 An NP Complete Language

In this section we focus on our original goal of designing an encryp-
tion for an NP complete language L. Specifically, we will consider
the NP-complete problem exact cover. Besides that, we introduce the
n-Multilinear Decisional Diffie-Hellman (n-MDDH) assumption and
the Decisional Multilinear No-Exact-Cover Assumption. The latter
will guarantee the security of our construction.

10.3.1 Exact Cover

We are given as input x = (n, S1, S2, . . . , Sl), where n is an integer and
each Si, i ∈ [l] is a subset of [n], and our goal is to find a subset of
indices T ⊆ [l] such that:

1. ∪i∈TSi = [n] and

2. ∀i, j ∈ T such that i ̸= j we have that Si ∩ Sj = ∅.

If such a T exists, we say that T is an exact cover of x.

10.3.2 Multilinear Maps

Mutlinear maps is a generalization of bilinear maps (which we have
already seen) that will be useful in our construction. Specifically, we
assume the existence of a group generator G, which takes as input a
security parameter λ and a positive integer n to indicate the number
of allowed operations. G(1λ, n) outputs a sequence of groups G⃗ =

(G1, G2, . . . , Gn) each of large prime order P > 2λ. In addition, we
let gi be a canonical generator of Gi (and is known from the group’s
description).

We also assume the existence of a set of bilinear maps {ei,j : Gi ×
Gj → Gi+j | i, j ≥ 1; i + j ≤ n}. The map ei,j satisfies the following
relation:

ei,j

(
ga

i , gb
j

)
= gab

i+j : ∀a, b ∈ Zp (10.1)

and we observe that one consequence of this is that ei,j(gi, gj) = gi+j

for each valid i, j.

10.3.3 The n-MDDH Assumption

The n-Multilinear Decisional Diffie-Hellman (n-MDDH) problem
states the following: A challenger runs G(1λ, n) to generate groups
and generators of order p. Then it picks random s, c1, . . . , cn ∈ Zp.
The assumption then states that given g = g1, gs, gc1 , . . . , gcn it is hard

to distinguish T = g
s ∏j∈[1,n] cj
n from a random group element in Gn,

with better than negligible advantage (in security parameter λ).
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10.3.4 Decisional Multilinear No-Exact-Cover Assumption

Let x = (n, S1, . . . , Sl) be an instance of the exact cover problem
that has no solution. Let param ← G(11+n, n) be a description of a
multilinear group family with order p = p(λ). Let a1, a2, . . . , an, r

be uniformly random in Zp. For i ∈ [l], let ci = g
∏j∈Si

aj

|Si |
. Distiguish

between the two distributions:

(params, c1, . . . , cl , ga1a2 ...an
n ) and (params, c1, . . . , cl , gr

n)

The Decisional Multilinear No-Exact-Cover Assumption is that for
all adversaries A, there exists a fixed negligible function ν(·) such
that for all instances x with no solution, A’s distinguishing advantage
against the Decisional Multilinear No-Exact-Cover Problem for x is at
most ν(λ).

10.3.5 The Encryption Scheme

We are now ready to give the description of our encryption scheme.

• Enc(x, m) takes as input x = (n, S1, . . . , Sl) and the message m ∈
{0, 1} and:

– Samples a0, a1, . . . , an uniformly and independently from Z∗p.

– ∀i ∈ [l] let ci = g
∏j∈Sj

aj

|Si |

– Sample uniformly an element r ∈ Z∗p

– Let d = d(m) be g
∏j∈[n] aj
n if m = 1 or gr

n if m = 0.

– Output c = (d, c1, . . . , cl)

• Dec(x, T), where T ⊆ [l] is a set of indices, computes ∏i∈T ci and
outputs 1 if the latter value equals to d or 0 otherwise.

• Correctness: Assume that T is an exact cover of x. Then, it is not
hard to see that:

∏
i∈T

ci = ∏
i∈T

g
∏j∈Sj

aj

|Si |

= g
∏j∈[n] aj
n

where we have used (10.1) repeatedly and the fact that T is an
exact cover (to show that ∑i∈T |Si| = n and that ∏i∈T ∏j∈Si

aj =

∏i∈[n] ai).

• Security: Intuitively, the construction is secure, since the only way

to make g
∏j∈[n] ai
n is to find an exact cover of [n]. As a matter of fact,
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observe that if an exact cover does not exist, then for each subset
of indices T′( such that ∪i∈T′Sj = [n]) we have that

n

∑
i=1
|Si| > n,

which means that ∏i∈T ∏j∈Si
aj is different than ∏j∈[n] aj. For-

mally, the security is based on the Decisional Multilinear No-
Exact-Cover Assumption.

10.4 Obfuscation

The problem of program obfuscation asks whether one can transform
a program (e.g., circuits, Turing machines) to another semantically
equivalent program (i.e., having the same input/output behavior),
but is otherwise intelligible. It was originally formalized by Barak
et al. who constructed a family of circuits that are non-obfuscatable
under the most natural virtual black box (VBB) security.

10.5 VBB Obfuscation

As a motivation, recall that in a private-key encryption setting, we
have a secret key k, encryption Ek and decryption Dk. A natural
candidate for public-key encryption would be to simply release an
encryption E′k ≡ Ek (i.e. E′k semantically equivalent to Ek, but compu-
tationally bounded adversaries would have a hard time figuring out k
from E′k.

Definition 10.1 (Obfuscator of circuits under VBB). O is an obfuscator
of circuits if

1. Correctness: ∀c, O(c) ≡ c.

2. Efficiency: ∀c, |O(c)| ≤ poly (|c|).

3. VBB: ∀A, A is PPT bounded, ∃ S (also PPT) s.t. ∀c,∣∣∣Pr [A (O(c)) = 1]− Pr
[
Sc(1|c|) = 1

]∣∣∣ ≤ negl(|c|).

Similarly we can define it for Turing machines.
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Definition 10.2 (Obfuscator of TMs under VBB). O is an obfuscator of
Turing machines if

1. Correctness: ∀M, O(M) ≡ M.

2. Efficiency: ∃q(·) = poly (·) , ∀M (M(x) halts in t steps =⇒ O(M)(x) halts in q(t) steps).

3. VBB: Let M′(t, x) be a TM that runs M(x) for t steps. ∀A, A is PPT
bounded, ∃ Sim (also PPT) s.t. ∀c,∣∣∣Pr [A (O(M)) = 1]− Pr

[
SM′(1|M

′ |) = 1
]∣∣∣ ≤ negl(

∣∣M′∣∣).
Let’s show that our candidate PKE from VBB obfuscator O is se-

mantic secure, using a simple hybrid argument.

Proof. Recall the public key PK = O(Ek). Let’s assume Ek is a circuit.

H0 :A({(PK, Ek(m0))})
H1 :Sc({Ek(m0)}) by VBB

H2 :Sc({Ek(m1)}) by semantic security of private key encryption

H3 :A({(PK, Ek(m1))}) by VBB

Unfortunately VBB obfuscator for all circuits does not exist. Now
we show the impossiblity result of VBB obfuscator.

Theorem 10.1. Let O be an obfuscator. There exists PPT bounded A, and
a family (ensemble) of functions {Hn}, {Zn} s.t. for every PPT bounded
simulator S,

A (O(Hn)) = 1 & A (O(Zn)) = 0∣∣∣Pr
[
SHn

(
1|Hn |

)
= 1

]
− Pr

[
SZn

(
1|Zn |

)
= 1

]∣∣∣ ≤ negl(n).

Proof. Let α, β
$← {0, 1}n.

We start by constructing A′, Cα,β, Dα,β s.t.

A′
(
O(Cα,β), O(Dα,β)

)
= 1 & A′

(
O(Zn), O(Dα,β)

)
= 0∣∣∣Pr

[
SCα,β ,Dα,β (1) = 1

]
− Pr

[
SZn ,Dα,β (1) = 1

]∣∣∣ ≤ negl(n).

Cα,β(x) =

β, if x = α,

0n, o/w

Dα,β(c) =

1, if c(α) = β,

0, o/w.
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Clearly A′(X, Y) = Y(X) works. Now notice that input length to D
grows as the size of O(C).

However for Turing machines which can have the same descrip-
tion length, one could combine the two in the following way:

Fα,β(b, x) =

Cα,β(x), b = 0

Dα,β(x), b = 1
.

Let OF = O(Fα,β), OF0(x) = OF(0, x), similarly for OF1, then A
would be just A(OF) = OF1(OF0).

Now assuming OWF exists, specifically we already have priavte-
key encryption, we modify D as follows.

Dα,β
k (1, i) = Enck(αi)

Dα,β
k (2, c, d,⊙) = Enck(Deck(c)⊙Deck(d)), where ⊙ is a gate of AND, OR, NOT

Dα,β
k (3, γ1, · · · , γn) =

1, ∀i, Deck(γi) = βi,

0, o/w.

Now the adversary A just simulate O(C) gate by gate with a much
smaller O(D), thus we can use the combining tricks as for the Turing
machines.

10.6 Indistinguishability Obfuscation

Definition 10.3 (Indistinguishability Obfuscator). A uniform PPT ma-
chine iO is an indistinguishability obfuscator for a collection of circuits
Cκ if the following conditions hold:

• Correctness. For every circuit C ∈ Cκ and for all inputs x, C(x) =

iO(C(x)).

• Polynomial slowdown. For every circuit C ∈ Cκ , |iO(C)| ≤ p(|C|) for
some polynomial p.

• Indistinguishability. For all pairs of circuits C1, C2 ∈ Cκ , if |C1| = |C2|
and C1(x) = C2(x) for all inputs x, then iO(C1)

c≃ iO(C2). More
precisely, there is a negligible function ν(k) such that for any (possibly
non-uniform) PPT A,∣∣Pr[A(iO(C1)) = 1]− Pr[A(iO(C2)) = 1]

∣∣ ≤ ν(k).

Lemma 10.1. Indistinguishability obfuscation implies witness encryption.

Proof. Recall the witness encryption scheme, with which one could
encrypt a message m to an instance x of an NP language L, such that

Dec (x, w, Enc (x, m)) =

m, if(x, w) ∈ L,

⊥, o/w
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Let Cx,m(w) be a circuit that on input w, outputs m if and only
if (x, w) ∈ L. Now we construct witness encryption as follows:
Enc (x, m) = iOCx,m, Dec (x, w, c) = c(w).

Semantic security follows from the fact that, for x ̸∈ L, Cx,m is just
a circuit that always output ⊥, and by indistinguishability obfusca-
tion, we could replace it with a constant circuit (padding if neces-
sary), and then change the message, and change the circuit back.

Lemma 10.2. Indistinguishability obfuscation and OWFs imply public key
encryption.

Proof. We’ll use a length doubling PRG F : {0, 1}n → {0, 1}2n,
together with a witness encryption scheme (E, D). The NP language
for the encryption scheme would be the image of F.

Gen(1n) = (PK = F(s), SK = s), s $← {0, 1}n

Enc (PK, m) = E(x = PK, m)

Dec (e, SK = s) = D(x = PK, w = s, c = e).

Lemma 10.3. Every best possible obfuscator could be equivalently achieved
with an indistinguishability obfuscation (up to padding and computationally
bounded).

Proof. Consider circuit c, the best possible obfuscated BPO(c), and c′

which is just padding c to the same size of BPO(c). Computationally
bounded adversaries cannot distinguish between iOc′ and iOBPO(c).

Note that doing iO never decreases the “entropy” of a circuit, so
iOBPO(c) is at least as secure as BPO(c).

10.7 iO for Polynomial-sized Circuits

Definition 10.4 (Indistinguishability Obfuscator for NC1). Let Cκ be
the collection of circuits of size O(κ) and depth O(log κ) with respect to
gates of bounded fan-in. Then a uniform PPT machine iONC1 is an indistin-
guishability obfuscator for circuit class NC1 if it is an indistinguishability
obfuscator for Cκ .

Given an indistinguishability obfuscator iONC1 for circuit class
NC1, we shall demonstrate how to achieve an indistinguishability
obfuscator iO for all polynomial-sized circuits. The amplification
relies on fully homomorphic encryption (FHE).
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Definition 10.5 (Homomorphic Encryption). A homomorphic encryp-
tion scheme is a tuple of PPT algorithms (Gen,Enc,Dec,Eval) as follows:

• (Gen,Enc,Dec) is a semantically-secure public-key encryption scheme.

• Eval(pk, C, e) takes public key pk, an arithmetic circuit C, and ciphertext
e = Enc(pk, x) of some circuit input x, and outputs Enc(pk, C(x)).

As an example, the ElGamal encryption scheme is homomorphic
over the multiplication function. Consider a cyclic group G of order
q and generator g, and let sk = a and pk = ga. For ciphertexts
Enc(pk, m1) = (gr1 , gar1 · m1) and Enc(pk, m2) = (gr2 , gar2 · m2),
observe that

Enc(pk, m1) ·Enc(pk, m2) = (gr1+r2 , ga(r1+r2) ·m1 ·m2) = Enc(pk, m1 ·m2)

Note that this scheme becomes additively homomorphic by encrypt-
ing gm instead of m.

Definition 10.6 (Fully Homomorphic Encryption). An encryption
scheme is fully homomorphic if it is both compact and homomorphic for
the class of all arithmetic circuits. Compactness requires that the size of the
output of Eval(·, ·, ·) is at most polynomial in the security parameter κ.

10.7.1 Construction

Let (Gen,Enc,Dec,Eval) be a fully homomorphic encryption scheme.
We require that Dec be realizable by a circuit in NC1. The obfuscation
procedure accepts a security parameter κ and a circuit C whose size
is at most polynomial in κ.

1. Generate (pk1, sk1)← Gen(1κ) and (pk2, sk2)← Gen(1κ).

2. Encrypt C, encoded in canonical form, as e1 ← Enc(pk1, C) and
e2 ← Enc(pk2, C).

3. Output an obfuscation σ = (iONC1(P), pk1, pk2, e1, e2) of program
Ppk1,pk2,sk1,e1,e2 as described below.

The evaluation procedure accepts the obfuscation σ and program
input x.

1. Let U be a universal circuit that computes C(x) given a circuit de-
scription C and input x, and denote by Ux the circuit U(·, x) where
x is hard-wired. Let R1 and R2 be the circuits which compute
f1 ← Eval(Ux, e1) and f2 ← Eval(Ux, e2), respectively.

2. Denote by ω1 and ω2 the set of all wires in R1 and R2, respectively.
Compute π1 : ω1 → {0, 1} and π2 : ω2 → {0, 1}, which yield the
value of internal wire w ∈ ω1, ω2 when applying x as the input to
R1 and R2.
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3. Output the result of running Ppk1,pk2,sk1,e1,e2(x, f1, π1, f2, π2).

Program Ppk1,pk2,sk1,e1,e2 has pk1, pk2, sk1, e1, and e2 embedded.

1. Check whether R1(x) = f1 ∧ R2(x) = f2. π1 and π2 enable this
check in logarithmic depth.

2. If the check succeeds, output Dec(sk1, f1); otherwise output ⊥.

The use of two key pairs and two encryptions of C, similar to
CCA1-secure schemes seen previously, eliminates the virtual black-
box requirement for concealing sk1 within iONC1(Ppk1,pk2,sk1,e1,e2).

10.7.2 Proof of Security

We prove the indistinguishability property for this construction
through a hybrid argument.

Proof. Through the sequence of hybrids, we gradually transform an
obfuscation of circuit C1 into an obfuscation of circuit C2, with each
successor being indistinguishable from its antecedent.

H0 : This corresponds to an honest execution of iO(C1). Recall that
e1 = Enc(pk1, C1), e2 = Enc(pk2, C1), and σ = (iONC1(Ppk1,pk2,sk1,e1,e2), . . .).

H1 : We instead generate e2 = Enc(pk2, C2), relying on the semantic
security of the underlying fully homomorphic encryption scheme.

H2 : We alter program Ppk1,pk2,sk2,e1,e2 such that it instead embeds sk2

and outputs Dec(sk2, f2). The output of the obfuscation procedure
becomes σ = (iONC1(Ppk1,pk2,sk2,e1,e2 , . . .); we rely on the properties
of functional equivalence and indistinguishability of iONC1 .

H3 : We generate e1 = Enc(pk1, C1) since sk1 is now unused, relying
again on the semantic security of the fully homomorphic encryp-
tion scheme.

H4 : We revert to the original program Ppk1,pk2,sk1,e1,e2 and arrive at
an honest execution of iO(C1).

10.8 Identity-Based Encryption

Another use of indistinguishability obfuscation is to realize identity-
based encryption (IBE).
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Definition 10.7 (Identity-Based Encryption). An identity-based en-
cryption scheme is a tuple of PPT algorithms (Setup,KeyGen,Enc,Dec)
as follows:

• Setup(1κ) generates and outputs a master public/private key pair
(mpk,msk).

• KeyGen(msk, id) derives and outputs a secret key skid for identity id.

• Enc(mpk, id, m) encrypts message m under identity id and outputs the
ciphertext.

• Dec(skid, c) decrypts ciphertext c and outputs the corresponding message
if c is a valid encryption under identity id, or ⊥ otherwise.

We combine an indistinguishability obfuscator iO with a digital
signature scheme (Gen,Sign,Verify).

• Let Setup ≡ Gen and KeyGen ≡ Sign.

• Enc outputs iO(Pm), where Pm is a program that outputs (embed-
ded) message m if input sk is a secret key for the given id, or ⊥
otherwise.

• Dec outputs the result of c(skid).

However, this requires that we have encryption scheme where the
“signatures” do not exist. We therefore investigate an alternative
scheme. Let (K, P, V) be a non-interactive zero-knowledge (NIZK)
proof system. Denote by Com(·; r) the commitment algorithm of a
non-interactive commitment scheme with explicit random coin r.

• Let σ be a common random string. Setup(1κ) outputs (mpk =

(σ, c1, c2),msk = r1), where c1 = Com(0; r1) and c2 = Com(0|id|; r2).

• KeyGen(msk, id) produces a proof π = P(σ, xid, s) for the following
language L: x ∈ L if there exists s such that

c1 = Com(0; s)︸ ︷︷ ︸
Type I witness

∨ (c2 = Com(id∗; s) ∧ id∗ ̸= id)︸ ︷︷ ︸
Type II witness

• Let Pid,m be a program which outputs m if V(σ, xid, πid) = 1 or
outputs ⊥ otherwise.

Enc(mpk, id, m) outputs iO(Pid,m).

We briefly sketch the hybrid argument:

H0 : This corresponds to an honest execution as described above.

H1 : We let c2 = Com(id∗; r2), relying on the hiding property of the
commitment scheme.
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H2 : We switch to the Type II witness using πidi
∀i ∈ [q], correspond-

ing to the queries issued by the adversary during the first phase of
the selective-identity security game.

H3 : We let c1 = Com(1; r1).

10.9 Digital Signature Scheme via Indistinguishable Obfuscation

A digital signature scheme can be constructed via indistinguish-
able obfuscation (iO). A digital signature scheme is made up of
(Setup,Sign,Verify).
(vk, sk)← Setup(1k):

sk = key of puncturable function and the seed of the PRF Fk

vk = iO(Pk) where Pk is the program:
Pk(m, σ):

for some OWF function f
return 1 if f (σ) = f (Fk(m))

return 0 otherwise
σ← Sign(sk, m): Output Fk(m).
Verify(vk, m, σ): Output Pk(m, σ).
Our security requirements will be that the adversary does wins the
following game negligibly:

Challenger Adversary
(vk, sk) = Setup(1k) and
picks random m

Pk,m→
œ,m∗←
Adversary wins game if Verify(vk, m∗, σ) = 1

To prove the security of this system, we use a hybrid argument. H0 is
as above.
H1: Adjust vk so that vk = iO(Pk,m,α) where α = Fk(m) and Pk,m,α is
the program such that:

Pk,m,α(m∗, σ):
for some OWF f

if m = m∗:
if f (σ) = f (α) return 1

otherwise return 0

else proceed as Pk from before
if f (σ) = f (Fk(m∗)) return 1

otherwise return 0

Note that this program does not change its output for any value. This
is indistinguishable from H0 by indistinguishability obfuscation.
H2: Adjust α so that it is a randomly sampled value. The indistin-
guishability of H2 and H1 follows from the security of PRG.
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H3: Adjust the program such that instead of α it relies on some β that
is compared instead f (α) in the third line.

Any adversary that can break H3 non-negligibly can break the
OWF f with at the value β.

10.10 Public Key Encryption via Indistinguishable Obfuscation

A public key encryption scheme can be constructed via indistinguish-
able obfuscation. A public key encryption scheme is made up of
(Gen, Enc, Dec). The PRG used below is a length doubling PRG.
(pk, sk)← Gen(1k)

sk = key of puncturable function and the seed of the PRF Fk

pk = iO(Pk) where Pk is the program:
Pk(m, r):

t = PRG(r)
Output c = (t, Fk(t)⊕m)

Enc(pk, m): Sample r and output (pk(m, r)).
Dec(sk = k, c = (c1, c2)): Output Fk(sk, c1)⊕ c2.
Our security requirements will be that the adversary does wins the
following game negligibly:

Challenger Adversary
(pk, sk) = Gen(1k) and
Randomly sample b from {0, 1} and
c∗ = Enc(pk, b) and

Pk,c∗→
b∗←
Adversary wins game if b = b∗

To prove the security of this system, we use a hybrid argument. H0 is
as above.
H1: Adjust pk so that pk = iO(Pk,α,t) where α = Fk(t) and Pk,α,t is the
program such that:

Pk,α,t(m, r):
t∗ = PRG(r)
if t∗ = t, output (t∗, α⊕m)

else output (t∗, Fk(t∗)⊕m)

Note that this program does not change its output for any value. This
is indistinguishable from H0 by indistinguishability obfuscation.
H2: Adjust α so that it is a randomly sampled value.
H3: Adjust the program such that t∗ is randomly sampled and is not
in the range of the PRG.

Any adversary that can win H3 can guess a random value non-
negligibly.
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10.11 Indistinguishable Obfuscation Construction from NC1 iO

A construction of indistinguishable obfuscation from iO for circuits in
NC1 is as follows:

Let Pk,C(x) be the circuit that outputs the garbled circuit ˜UC(C, x)
with randomness Fk(x) which is a punctured (at k) PRF in NC1

Note that UC(C, x) outputs C(x) (UC is the “universal” circuit)
iO(C) → sample k randomly from {0, 1}|x| and output iONC1(Pk,C)

padded to a length l
As before, we use a hybrid argument to show the security for iO.

H0: iO(C) = iONC1(Pk,C) as above.
H f inal = H2n : iO(pk, c2)

H1 · · ·Hi: Create a program Qk,c1,c2,i(x) and obfuscate it.
Qk,c1,c2,i(x):
Sample k randomly
if x ≥ i, return Pk,c1(x)
else , return Pk,c2(x)

Note that Hi and Hi+1 are indistinguishable for any value other than
x = i.
Hi,1 (between Hi and Hi+1): Create a program Qk,c1,c2,i,α(x), where
α = Qk,c1,c2,i(x) and obfuscate it.

Qk,c1,c2,i,α(x):
Sample k randomly
if x = i, return α

else , return Qk,c1,c2,i(x)
Hi,2: Replace α with a random β using fresh coins
Hi,3: Create the c2(x) value using fresh coins
Hi,4: Create the c2(x) value using Fk(x)
Hi,5: Finish the migration to Qk,c1,c2,i+1

Note that at H f inal , the circuit being obfuscated is completely
changed from c1 to c2.
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