CS 276: Homework 9

Due Date: Friday November 22nd, 2024 at 8:59pm via Gradescope

1 Simulation-Sound NIZKs

We will use the Fiat-Shamir transform to convert the interactive sigma protocol from homework 8 into a non-interactive zero-knowledge proof (NIZK).

We will also define the notion of simulation soundness for NIZKs, which combines soundness and zero-knowledge into one security definition. Simulation soundness essentially states that an adversary who sees simulated proofs of true and false statements of their choosing, cannot produce an accepting proof on a different false statement.

Simulation-sound NIZKs can be used to construct CCA2-secure encryption and signatures, among other applications.

The Fiat-Shamir Transform: Let us start with the sigma protocol from homework 8 and make it non-interactive by computing the verifier's message m with a random oracle \mathcal{H} applied to the partial transcript of the protocol. This is known as the *Fiat-Shamir transform*.

As in homework 8, let \mathbb{G} be a cryptographic group of prime order p, where $\frac{1}{p} = \mathsf{negl}(\lambda)$. Let $d_{in}, d_{out} \in \mathbb{N}$ be the dimensions of the input and output spaces, respectively. A function F mapping $\mathbb{Z}_p^{d_{in}} \to \mathbb{G}^{d_{out}}$ is homomorphic if for any $\mathbf{x}, \mathbf{x}' \in \mathbb{Z}_p^{d_{in}}, F(\mathbf{x} + \mathbf{x}') = F(\mathbf{x}) \cdot F(\mathbf{x}')$. An *instance* of the language L is any tuple (F, \mathbf{y}) such that F is a homomorphic function mapping $\mathbb{Z}_p^{d_{in}} \to \mathbb{G}^{d_{out}}$, and $\mathbf{y} \in \mathsf{Im}(F)$. The corresponding *witness* is an input $\mathbf{x} \in \mathbb{Z}_p^{d_{in}}$ such that $F(\mathbf{x}) = \mathbf{y}$.

Additionally, let us assume that if we sample $\mathbf{x} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{d_{in}}$, then $F(\mathbf{x})$ has min-entropy $\omega(\log^2(\lambda))$. In other words, for any $\mathbf{y} \in \mathbb{G}^{d_{out}}$,

$$\Pr_{\mathbf{x} \leftarrow \mathbb{Z}_p^{d_{in}}}[F(\mathbf{x}) = \mathbf{y}] \le 2^{-\omega(\log^2(\lambda))} = \mathsf{negl}(\lambda)$$

Let us also assume that the sigma protocol from homework 8 has **unique responses**. This means that for any $(\mathbf{y}, \mathbf{b}, m)$, there is at most one value of **c** for which $F(\mathbf{c}) = \mathbf{y}^m \cdot \mathbf{b}$.¹

Also, let \mathcal{H} be a random oracle mapping $\mathbb{G}^{d_{out}} \times \mathbb{G}^{d_{out}} \to \mathbb{Z}_p$.

Finally, the NIZK is a pair of algorithms (Prove, Verify), which are constructed as follows.

 $\mathsf{Prove}(\mathbf{x}, \mathbf{y})$:

- 1. Sample $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{d_{in}}$, and compute $\mathbf{b} = F(\mathbf{a})$.
- 2. Compute $m = \mathcal{H}(\mathbf{y}, \mathbf{b})$.
- 3. Compute $\mathbf{c} = m \cdot \mathbf{x} + \mathbf{a}$ and output $\pi = (\mathbf{b}, \mathbf{c})$.

Verify (\mathbf{y}, π) :

¹The unique responses property holds, for instance, when F is injective, and it holds for the Schnorr and Chaum-Pedersen protocols.

- 1. Compute $m = \mathcal{H}(\mathbf{y}, \mathbf{b})$.
- 2. If $F(\mathbf{c}) = \mathbf{y}^m \cdot \mathbf{b}$, then output accept. Else output reject.

Zero-Knowledge: Let us define the notion of zero-knowledge for NIZKs.

Definition 1.1 (Zero-Knowledge Adversary and Simulator) The zero-knowledge adversary \mathcal{A} is run in one of the following games, $\mathcal{G}_{\mathsf{Real}}$ or $\mathcal{G}_{\mathsf{Ideal}}$, and they are not told which one. \mathcal{A} makes proof queries of the form $(\mathbf{x}, \mathbf{y}) \in \mathbb{Z}_p^{d_{in}} \times \mathbb{G}^{d_{out}}$, where $F(\mathbf{x}) = \mathbf{y}$, and random oracle queries of the form $(\mathbf{y}, \mathbf{b}) \in \mathbb{G}^{d_{out}} \times \mathbb{G}^{d_{out}}$, and finally they output a bit b in order to guess which game they are in.

In the real world, $\mathcal{G}_{\mathsf{Real}}$, the challenger samples a random oracle \mathcal{H} and responds to each random oracle query with $\mathcal{H}(\mathbf{y}, \mathbf{b})$. For each proof query (\mathbf{x}, \mathbf{y}) such that $F(\mathbf{x}) = \mathbf{y}$, the challenger responds with $\pi = \mathsf{Prove}(\mathbf{x}, \mathbf{y})$.

In the ideal world, $\mathcal{G}_{\mathsf{Ideal}}$, there is a PPT simulator \mathcal{S} that handles the queries. \mathcal{S} receives each random oracle query (\mathbf{y}, \mathbf{b}) and computes the response $\mathcal{S}.\mathsf{RO}(\mathbf{y}, \mathbf{b})$. For each proof query, (\mathbf{x}, \mathbf{y}) such that $F(\mathbf{x}) = \mathbf{y}$, \mathcal{S} only receives \mathbf{y} and must compute the response $\mathcal{S}.\mathsf{Prove}(\mathbf{y})$.

Definition 1.2 (Zero-Knowledge for NIZKs) The NIZK satisfies zero-knowledge if there exists a PPT simulator S such that for all PPT adversaries A,

 $|\Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\mathsf{Real}}] - \Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\mathsf{Ideal}}]| = \mathsf{negl}(\lambda)$

Simulation Soundness: In the definition of zero-knowledge, S is only required to output an accepting proof for a statement in the language (i.e. an (\mathbf{x}, \mathbf{y}) for which $F(\mathbf{x}) = \mathbf{y}$). Simulation soundness allows the adversary to run S on false statements as well (where $\mathbf{y} \notin \operatorname{Im}(F)$) and guarantees that the adversary cannot forge an accepting proof on a new false statement.

Definition 1.3 (Simulation Soundness Game \mathcal{G}_{SS}) The simulation soundness adversary \mathcal{B} interacts with \mathcal{S} directly. \mathcal{B} can make proof queries of the form $\mathbf{y} \in \mathbb{G}^{d_{out}}$ and receives the response \mathcal{S} .Prove(\mathbf{y}). \mathcal{B} can also make random oracle queries of the form $(\mathbf{y}, \mathbf{b}) \in \mathbb{G}^{d_{out}} \times \mathbb{G}^{d_{out}}$ and receives the response \mathcal{S} .RO(\mathbf{y}, \mathbf{b}).

Finally \mathcal{B} outputs a statement-proof tuple (\mathbf{y}^*, π^*) , which the challenger verifies by computing Verify (\mathbf{y}^*, π^*) . If Verify needs to query the random oracle, then the challenger queries \mathcal{S} .RO.

 \mathcal{B} wins \mathcal{G}_{SS} if (\mathbf{y}^*, π^*) was not a previous query-response pair for \mathcal{S} . Prove, and Verify (\mathbf{y}^*, π^*) outputs accept, and $\mathbf{y} \notin Im(F)$ (\mathbf{y} is a false statement).

Definition 1.4 (Simulation Soundness) A NIZK is simulation-sound if there exists a PPT simulator S such that the following hold:

• Zero Knowledge: For all PPT zero-knowledge adversaries A,

$$|\Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\mathsf{Real}}] - \Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\mathsf{Ideal}}]| = \mathsf{negl}(\lambda)$$

• Unforgeability: For all PPT simulation soundness adversaries \mathcal{B} ,

$$\Pr[\mathcal{B} \ wins \ \mathcal{G}_{SS}] = \mathsf{negl}(\lambda)$$

 $\label{eq:Question:Prove that the NIZK (Prove, Verify) constructed above satisfies simulation soundness.$