CS 276: Homework 9

Due Date: Friday November 22nd, 2024 at 8:59pm via Gradescope

1 Simulation-Sound NIZKs

We will use the Fiat-Shamir transform to convert the interactive sigma protocol from homework 8 into a non-interactive zero-knowledge proof (NIZK).

We will also define the notion of simulation soundness for NIZKs, which combines soundness and zero-knowledge into one security definition. Simulation soundness essentially states that an adversary who sees simulated proofs of true and false statements of their choosing, cannot produce an accepting proof on a different false statement.

Simulation-sound NIZKs can be used to construct CCA2-secure encryption and signatures, among other applications.

The Fiat-Shamir Transform: Let us start with the sigma protocol from homework 8 and make it non-interactive by computing the verifier's message m with a random oracle \mathcal{H} applied to the partial transcript of the protocol. This is known as the Fiat-Shamir transform.

As in homework 8, let G be a cryptographic group of prime order p, where $\frac{1}{p} = \text{negl}(\lambda)$. Let d_{in} , $d_{out} \in \mathbb{N}$ be the dimensions of the input and output spaces, respectively. A function F mapping $\mathbb{Z}_p^{d_{in}} \to \mathbb{G}^{d_{out}}$ is homomorphic if for any $\mathbf{x}, \mathbf{x}' \in \mathbb{Z}_p^{d_{in}}$, $F(\mathbf{x} + \mathbf{x}') = F(\mathbf{x}) \cdot F(\mathbf{x}')$. An *instance* of the language L is any tuple (F, y) such that F is a homomorphic function mapping $\mathbb{Z}_p^{d_{in}} \to \mathbb{G}^{d_{out}}$, and $\mathbf{y} \in \text{Im}(F)$. The corresponding witness is an input $\mathbf{x} \in \mathbb{Z}_p^{d_{in}}$ such that $F(\mathbf{x}) = \mathbf{y}$.

Additionally, let us assume that if we sample $\mathbf{x} \leftarrow \mathbb{Z}_{p}^{d_{in}}$, then $F(\mathbf{x})$ has min-entropy $\omega(\log^2(\lambda))$. In other words, for any $y \in \mathbb{G}^{d_{out}},$

$$
\Pr_{\mathbf{x}\overset{\$}\leftarrow \mathbb{Z}_p^{d_{in}}} [F(\mathbf{x})=\mathbf{y}]\leq 2^{-\omega(\log^2(\lambda))}=\mathsf{negl}(\lambda)
$$

Let us also assume that the sigma protocol from homework 8 has **unique responses**. This means that for any $(\mathbf{y}, \mathbf{b}, m)$, there is at most one value of **c** for which $F(\mathbf{c}) = \mathbf{y}^m \cdot \mathbf{b}$.^{[1](#page-0-0)}

Also, let H be a random oracle mapping $\mathbb{G}^{d_{out}} \times \mathbb{G}^{d_{out}} \to \mathbb{Z}_p$.

Finally, the NIZK is a pair of algorithms (Prove, Verify), which are constructed as follows.

Prove (\mathbf{x}, \mathbf{y}) :

- 1. Sample $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{d_{in}},$ and compute $\mathbf{b} = F(\mathbf{a})$.
- 2. Compute $m = \mathcal{H}(\mathbf{y}, \mathbf{b})$.
- 3. Compute $\mathbf{c} = m \cdot \mathbf{x} + \mathbf{a}$ and output $\pi = (\mathbf{b}, \mathbf{c})$.

Verify (\mathbf{y}, π) :

¹The unique responses property holds, for instance, when F is injective, and it holds for the Schnorr and Chaum-Pedersen protocols.

- 1. Compute $m = \mathcal{H}(\mathbf{y}, \mathbf{b})$.
- 2. If $F(c) = y^m \cdot b$, then output accept. Else output reject.

Zero-Knowledge: Let us define the notion of zero-knowledge for NIZKs.

Definition 1.1 (Zero-Knowledge Adversary and Simulator) The zero-knowledge adversary A is run in one of the following games, $\mathcal{G}_{\text{Real}}$ or $\mathcal{G}_{\text{Ideal}}$, and they are not told which one. A makes proof queries of the form $(\mathbf{x}, \mathbf{y}) \in \mathbb{Z}_{p}^{d_{in}} \times \mathbb{G}^{d_{out}}$, where $F(\mathbf{x}) = \mathbf{y}$, and random oracle queries of the form $(\mathbf{y}, \mathbf{b}) \in \mathbb{G}^{d_{out}} \times \mathbb{G}^{d_{out}}$, and finally they output a bit b in order to guess which game they are in.

In the real world, $\mathcal{G}_{\text{Real}}$, the challenger samples a random oracle H and responds to each random oracle query with $\mathcal{H}(\mathbf{y}, \mathbf{b})$. For each proof query (\mathbf{x}, \mathbf{y}) such that $F(\mathbf{x}) = \mathbf{y}$, the challenger responds with $\pi = \text{Prove}(\mathbf{x}, \mathbf{y}).$

In the ideal world, $\mathcal{G}_{\text{Ideal}}$, there is a PPT simulator S that handles the queries. S receives each random oracle query (y, b) and computes the response $\mathcal{S}.\mathsf{RO}(y, b)$. For each proof query, (x, y) such that $F(x) = y$, S only receives y and must compute the response S.Prove(y).

Definition 1.2 (Zero-Knowledge for NIZKs) The NIZK satisfies zero-knowledge if there exists a PPT simulator S such that for all PPT adversaries A ,

 $|\Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\text{Real}}] - \Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\text{Ideal}}]| = \text{negl}(\lambda)$

Simulation Soundness: In the definition of zero-knowledge, S is only required to output an accepting proof for a statement in the language (i.e. an (\mathbf{x}, \mathbf{y}) for which $F(\mathbf{x}) = \mathbf{y}$). Simulation soundness allows the adversary to run S on false statements as well (where $y \notin$ $\mathsf{Im}(F)$) and guarantees that the adversary cannot forge an accepting proof on a new false statement.

Definition 1.3 (Simulation Soundness Game \mathcal{G}_{SS}) The simulation soundness adversary B interacts with S directly. B can make proof queries of the form $y \in \mathbb{G}^{d_{out}}$ and receives the response S.Prove(y). B can also make random oracle queries of the form $(y, b) \in \mathbb{G}^{d_{out}} \times \mathbb{G}^{d_{out}}$ and receives the response $\mathcal{S}.\mathsf{RO}(\mathbf{y},\mathbf{b}).$

Finally B outputs a statement-proof tuple (y^*, π^*) , which the challenger verifies by computing Verify(y^*, π^*). If Verify needs to query the random oracle, then the challenger queries S.RO.

B wins \mathcal{G}_{SS} if (\mathbf{y}^*, π^*) was not a previous query-response pair for S.Prove, and Verify (\mathbf{y}^*, π^*) *outputs* accept, and $y \notin Im(F)$ (y is a false statement).

Definition 1.4 (Simulation Soundness) A NIZK is simulation-sound if there exists a PPT simulator S such that the following hold:

• Zero Knowledge: For all PPT zero-knowledge adversaries A,

 $|\Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\text{Real}}] - \Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\text{Ideal}}]| = \text{negl}(\lambda)$

• Unforgeability: For all PPT simulation soundness adversaries \mathcal{B} ,

$$
\Pr[\mathcal{B} \text{ wins } \mathcal{G}_{SS}] = \mathsf{negl}(\lambda)
$$

Question: Prove that the NIZK (Prove, Verify) constructed above satisfies simulation soundness.

Solution This problem is adapted from [Boneh & Shoup, exercise 20.22 part a.](https://toc.cryptobook.us/book.pdf#subsection.19.5.4)

Construction of S:

- 1. S maintains a database for the random oracle that is initially empty.
- 2. S.RO(y, b): If (y, b, m) appears in the database for some $m \in \mathbb{Z}_p$, then return m. Otherwise, sample $m \stackrel{\$}{\leftarrow} \mathbb{Z}_p$, add $(\mathbf{y}, \mathbf{b}, m)$ to the database, and return m.
- 3. $S. Prove(y)$:
	- (a) Sample $m \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and $\mathbf{c} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{d_{in}}$.
	- (b) Compute **b** = $F(c) \cdot y^{-m}$.
	- (c) If $(\mathbf{y}, \mathbf{b}, m')$ appears in the database, for some $m' \neq m$, then halt and output \perp . Else, add $(\mathbf{y}, \mathbf{b}, m)$ to the database, and output $\pi = (\mathbf{b}, \mathbf{c})$.

Lemma 1.5 The NIZK constructed above satisfies zero-knowledge (def. [1.2\)](#page-1-0) with the simulator S constructed above.

Proof.

- 1. S correctly simulates the random oracle because on each input (v, b) , the output of S.RO is a uniformly random $m \in \mathbb{Z}_p$.
- 2. In $\mathcal{G}_{\text{Ideal}}$, the probability that S outputs \perp is negligible. The adversary makes a polynomial number of queries to S .RO and S .Prove, so the size of the database is always polynomial. Next, during each call to S.Prove, c is sampled uniformly at random from $\mathbb{Z}_p^{d_{in}}$ and **b** is computed as $\mathbf{b} = F(\mathbf{c}) \cdot \mathbf{y}^{-m}$. So $F(\mathbf{c})$ has min entropy $\omega(\log^2(\lambda))$, and \mathbf{c} also has min-entropy $\omega(\log^2(\lambda))$ due to the randomness of $F(\mathbf{c})$. Then the probability that $(\mathbf{y}, \mathbf{b}, *)$ appears in the database is $\leq \text{poly}(\lambda) \cdot 2^{-\omega(\log^2(\lambda))} = \text{negl}(\lambda)$.

Likewise, in G_{Real} , the probability is negligible that $\text{Prove}(\mathbf{x}, \mathbf{y})$ outputs a value b, such that (y, b) has been previously been queried to H . The Prove algorithm samples $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}^{d_{in}}$ and computes $\mathbf{b} = F(\mathbf{a})$. Then the min-entropy of \mathbf{b} is $\omega(\log^{2}(\lambda))$, so the probability that (\mathbf{y}, \mathbf{b}) was previously queried to \mathcal{H} is $\leq \mathsf{poly}(\lambda) \cdot 2^{-\omega(\log^2(\lambda))} = \mathsf{negl}(\lambda)$.

3. On any proof query (x, y) (where $F(x) = y$), the output distributions of S.Prove(y) and $Prove(\mathbf{x}, \mathbf{y})$ are statistically close.

In $\mathcal{G}_{\mathsf{Ideal}}$, let us condition on the event that $\mathcal{S}.\mathsf{Prove}(\mathbf{y})$ never outputs \perp . Since this occurs with overwhelming probability, this changes the output distribution of the proof queries negligibly. Next, the values $(b, S.RO(y, b), c)$ have the following distribution: **c** and $\mathcal{S}.\mathsf{RO}(\mathbf{y},\mathbf{b})$ are uniformly and independently random. Finally, **b** is the unique value for which:

$$
F(\mathbf{c}) = \mathbf{y}^{\mathcal{S}.\mathsf{RO}(\mathbf{y},\mathbf{b})} \cdot \mathbf{b}
$$

In $\mathcal{G}_{\text{Real}}$, let us condition on the event that $\text{Prove}(\mathbf{x}, \mathbf{y})$ outputs a value **b**, such that (\mathbf{y}, \mathbf{b}) has not previously been queried to H by the adversary. Then the values $(\mathbf{b}, \mathcal{H}(\mathbf{y}, \mathbf{b}), \mathbf{c})$ have the following distribution: **c** is uniformly random due to the randomness of **a**. $\mathcal{H}(\mathbf{y}, \mathbf{b})$ is uniformly and independently random. Finally, **b** is the unique value for which

$$
F(\mathbf{c}) = \mathbf{y}^{\mathcal{H}(\mathbf{y},\mathbf{b})} \cdot \mathbf{b}
$$

The distribution of $(b, \mathcal{H}(y, b), c)$ in $\mathcal{G}_{\text{Real}}$ is the same as the distribution of $(b, \mathcal{S}.\text{RO}(y, b), c)$ in $\mathcal{G}_{\mathsf{Ideal}}$.

4. In summary, the adversary's view in $\mathcal{G}_{\text{Real}}$ and $\mathcal{G}_{\text{Ideal}}$ are statistically close, so

 $|Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\text{Real}}] - Pr[\mathcal{A} \to 1 \text{ in } \mathcal{G}_{\text{Ideal}}]| = \text{negl}(\lambda)$

Then the NIZK satisfies zero-knowledge with the simulator S .

Lemma 1.6 For all PPT simulation soundness adversaries \mathcal{B} , $Pr[\mathcal{B}$ wins $\mathcal{G}_{SS}] = negl(\lambda)$.

Proof. We will reduce to the soundness of the interactive sigma protocol from homework 8.

1. We showed in HW 8 that the sigma protocol satisfies knowledge soundness, which says that for any \mathbf{y} , if there exists a cheating prover P^* that can convince the verifier to accept y with non-negligible probability, then we can extract from this prover – with non-negligible probability – a witness **x** that satisfies $F(\mathbf{x}) = \mathbf{y}$.

Knowledge soundness implies (regular) soundness, which is defined as follows. The sigma protocol satisfies regular soundness if for any given value $y \notin Im(F)$, no cheating prover can convince the honest verifier to accept y, except with negligible probability.

If the protocol did not satisfy regular soundness, then there would exist a cheating prover that could convince the verifier to accept $y \notin Im(F)$ with non-negligible probability. Then we could use our knowledge soundness extractor to extract a value **x** such that $F(\mathbf{x}) = \mathbf{y}$. However, this is impossible because $\mathbf{y} \notin \text{Im}(F)$, so no such x exists. Therefore, the protocol must satisfy regular soundness in addition to knowledge soundness.

2. Next, if there exists an adversary A_{SS} that wins the simulation soundness game G_{SS} with non-negligible probability, then we can construct an adversary \mathcal{A}_{Σ} that breaks the soundness of the sigma protocol from homework 8.

Construction of A_{Σ} :

- (a) Let $q = \text{poly}(\lambda)$ be an upper bound on the number of queries that \mathcal{A}_{SS} makes to S.RO during \mathcal{G}_{SS} . Sample a query $i \stackrel{\$}{\leftarrow} [q+1]$.
- (b) Run S and A_{SS} in a simulation of \mathcal{G}_{SS} , and allow A_{SS} to query S. Prove and S.RO. On the *i*-th query to S.RO, which has input $(\mathbf{y}_i, \mathbf{b}_i)$, \mathcal{A}_{Σ} sends $(\mathbf{y}_i, \mathbf{b}_i)$ to the sigma protocol's verifier and receives a uniformly random $m_i \in \mathbb{Z}_p$. Then \mathcal{A}_{Σ} adds $(\mathbf{y}_i, \mathbf{b}_i, m_i)$ to the database and responds to the S.RO query with m_i .

T

- (c) At the end of the simulation of \mathcal{G}_{SS} , \mathcal{A}_{SS} outputs \mathbf{y}^* and $\pi^* = (\mathbf{b}^*, \mathbf{c}^*)$. \mathcal{A}_{Σ} queries $\mathcal{S}.\mathsf{RO}(\mathbf{y}^*, \mathbf{b}^*)$ to obtain m^* .
- (d) If \mathcal{A}_{SS} 's output satisfies $\mathbf{y}^* = \mathbf{y}_i$ and $\mathbf{b}^* = \mathbf{b}_i$, then \mathcal{A}_{Σ} sends \mathbf{c}^* to the verifier.
- 3. Let us consider the case where \mathcal{A}_{SS} wins \mathcal{G}_{SS} , and its output satisfies $\mathbf{y}^* = \mathbf{y}_i$ and $\mathbf{b}^* =$ \mathbf{b}_i . Then \mathcal{A}_{Σ} will convince the sigma protocol's verifier to accept because $\mathcal{S}.\mathsf{RO}(\mathbf{y}_i, \mathbf{b}_i)$ equals the m_i chosen by the verifier, and

$$
F(\mathbf{c}^*) = (\mathbf{y}^*)^{\mathcal{S}.\mathsf{RO}(\mathbf{y}^*,\mathbf{b}^*)} \cdot \mathbf{b}^* = \mathbf{y}_i^{m_i} \cdot \mathbf{b}_i
$$

- 4. Furthermore, by the end of \mathcal{A}_{Σ} 's execution, the database contains the entry $(\mathbf{y}^*, \mathbf{b}^*, m^*)$ because \mathcal{A}_{Σ} queries $\mathcal{S}.\mathsf{RO}(\mathbf{y}^*, \mathbf{b}^*)$ and obtains m^* .
- 5. Next, $(\mathbf{y}^*, \mathbf{b}^*, m^*)$ was first added to the database on a call to S.RO, not a call to S.Prove because otherwise \mathcal{A}_{SS} would not have won \mathcal{G}_{SS} . If $(\mathbf{y}^*, \mathbf{b}^*, m^*)$ were first added to the database on a query to S.Prove, then that query returned $\pi^* = (\mathbf{b}^*, \mathbf{c}')$ where \mathbf{c}' is the unique value for which $F(c') = (\mathbf{y}^*)^{m^*} \cdot \mathbf{b}^*$. If \mathcal{A}_{SS} 's final output $-\mathbf{y}^*, \pi^* = (\mathbf{b}^*, \mathbf{c}^*) - \text{is}$ accepted by the verifier, then $\mathbf{c}^* = \mathbf{c}'$, so (\mathbf{y}^*, π^*) was previously generated on a query to S.Prove. Then \mathcal{A}_{SS} will not win \mathcal{G}_{SS} .

Therefore, if \mathcal{A}_{SS} wins \mathcal{G}_{SS} , then $(\mathbf{y}^*, \mathbf{b}^*, m^*)$ was first added to the database on a call to S.RO.

- 6. Next, given that \mathcal{A}_{SS} wins \mathcal{G}_{SS} , the probability that $(\mathbf{y}^*, \mathbf{b}^*, m^*)$ was first added to the database on the *i*-th query to S.RO is $\frac{1}{q+1}$ = nonnegl(λ). This is because *i* is uniformly random and independent of \mathcal{A}_{SS} 's view. The verifier samples $m_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p$, and for every $j \neq i$, S.RO also samples m_j uniformly from \mathbb{Z}_p , so \mathcal{A}_{SS} 's view is the same for any value of *i* that \mathcal{A}_{Σ} chose.
- 7. In summary, with non-negligible probability, \mathcal{A}_{SS} wins \mathcal{G}_{SS} , and $(\mathbf{y}^*, \mathbf{b}^*, m^*)$ was first added to the database on the *i*-th query to S.RO. In this case, A_{Σ} convinces the verifier to accept a false statement, which violates soundness.

5