
CS 276, Fall 2024 Prof. Sanjam Garg

CS 276: Homework 9
Due Date: Friday November 22nd, 2024 at 8:59pm via Gradescope

1 Simulation-Sound NIZKs

We will use the Fiat-Shamir transform to convert the interactive sigma protocol from home-
work 8 into a non-interactive zero-knowledge proof (NIZK).

We will also define the notion of simulation soundness for NIZKs, which combines sound-
ness and zero-knowledge into one security definition. Simulation soundness essentially states
that an adversary who sees simulated proofs of true and false statements of their choosing,
cannot produce an accepting proof on a different false statement.

Simulation-sound NIZKs can be used to construct CCA2-secure encryption and signa-
tures, among other applications.

The Fiat-Shamir Transform: Let us start with the sigma protocol from homework 8
and make it non-interactive by computing the verifier’s message m with a random oracle H
applied to the partial transcript of the protocol. This is known as the Fiat-Shamir transform.

As in homework 8, let G be a cryptographic group of prime order p, where 1
p = negl(λ).

Let din, dout ∈ N be the dimensions of the input and output spaces, respectively. A function
F mapping Zdinp → Gdout is homomorphic if for any x,x′ ∈ Zdinp , F (x + x′) = F (x) · F (x′).
An instance of the language L is any tuple (F,y) such that F is a homomorphic function
mapping Zdinp → Gdout , and y ∈ Im(F ). The corresponding witness is an input x ∈ Zdinp such
that F (x) = y.

Additionally, let us assume that if we sample x
$← Zdinp , then F (x) has min-entropy

ω(log2(λ)). In other words, for any y ∈ Gdout ,

Pr
x

$←Zdin
p

[F (x) = y] ≤ 2−ω(log2(λ)) = negl(λ)

Let us also assume that the sigma protocol from homework 8 has unique responses.
This means that for any (y,b,m), there is at most one value of c for which F (c) = ym · b.1

Also, let H be a random oracle mapping Gdout ×Gdout → Zp.
Finally, the NIZK is a pair of algorithms (Prove,Verify), which are constructed as follows.

Prove(x,y):

1. Sample a
$← Zdinp , and compute b = F (a).

2. Compute m = H(y,b).

3. Compute c = m · x + a and output π = (b, c).

Verify(y, π):

1The unique responses property holds, for instance, when F is injective, and it holds for the Schnorr and
Chaum-Pedersen protocols.

1



CS 276, Fall 2024 Prof. Sanjam Garg

1. Compute m = H(y,b).

2. If F (c) = ym · b, then output accept. Else output reject.

Zero-Knowledge: Let us define the notion of zero-knowledge for NIZKs.

Definition 1.1 (Zero-Knowledge Adversary and Simulator) The zero-knowledge ad-
versary A is run in one of the following games, GReal or GIdeal, and they are not told which
one. A makes proof queries of the form (x,y) ∈ Zdinp ×Gdout, where F (x) = y, and random

oracle queries of the form (y,b) ∈ Gdout × Gdout, and finally they output a bit b in order to
guess which game they are in.

In the real world, GReal, the challenger samples a random oracle H and responds to each
random oracle query with H(y,b). For each proof query (x,y) such that F (x) = y, the
challenger responds with π = Prove(x,y).

In the ideal world, GIdeal, there is a PPT simulator S that handles the queries. S receives
each random oracle query (y,b) and computes the response S.RO(y,b). For each proof query,
(x,y) such that F (x) = y, S only receives y and must compute the response S.Prove(y).

Definition 1.2 (Zero-Knowledge for NIZKs) The NIZK satisfies zero-knowledge if there
exists a PPT simulator S such that for all PPT adversaries A,

|Pr[A → 1 in GReal]− Pr[A → 1 in GIdeal]| = negl(λ)

Simulation Soundness: In the definition of zero-knowledge, S is only required to output
an accepting proof for a statement in the language (i.e. an (x,y) for which F (x) = y).
Simulation soundness allows the adversary to run S on false statements as well (where y /∈
Im(F )) and guarantees that the adversary cannot forge an accepting proof on a new false
statement.

Definition 1.3 (Simulation Soundness Game GSS) The simulation soundness adversary
B interacts with S directly. B can make proof queries of the form y ∈ Gdout and receives the
response S.Prove(y). B can also make random oracle queries of the form (y,b) ∈ Gdout×Gdout

and receives the response S.RO(y,b).
Finally B outputs a statement-proof tuple (y∗, π∗), which the challenger verifies by com-

puting Verify(y∗, π∗). If Verify needs to query the random oracle, then the challenger queries
S.RO.
B wins GSS if (y∗, π∗) was not a previous query-response pair for S.Prove, and Verify(y∗, π∗)

outputs accept, and y /∈ Im(F ) (y is a false statement).

Definition 1.4 (Simulation Soundness) A NIZK is simulation-sound if there exists a
PPT simulator S such that the following hold:

• Zero Knowledge: For all PPT zero-knowledge adversaries A,

|Pr[A → 1 in GReal]− Pr[A → 1 in GIdeal]| = negl(λ)

• Unforgeability: For all PPT simulation soundness adversaries B,

Pr[B wins GSS] = negl(λ)

2



CS 276, Fall 2024 Prof. Sanjam Garg

Question: Prove that the NIZK (Prove,Verify) constructed above satisfies simulation sound-
ness.

Solution This problem is adapted from Boneh & Shoup, exercise 20.22 part a.

Construction of S:

1. S maintains a database for the random oracle that is initially empty.

2. S.RO(y,b): If (y,b,m) appears in the database for some m ∈ Zp, then return m.

Otherwise, sample m
$← Zp, add (y,b,m) to the database, and return m.

3. S.Prove(y):

(a) Sample m
$← Zp and c

$← Zdinp .

(b) Compute b = F (c) · y−m.

(c) If (y,b,m′) appears in the database, for some m′ 6= m, then halt and output ⊥.
Else, add (y,b,m) to the database, and output π = (b, c).

Lemma 1.5 The NIZK constructed above satisfies zero-knowledge (def. 1.2) with the simu-
lator S constructed above.

Proof.

1. S correctly simulates the random oracle because on each input (y,b), the output of
S.RO is a uniformly random m ∈ Zp.

2. In GIdeal, the probability that S outputs ⊥ is negligible. The adversary makes a poly-
nomial number of queries to S.RO and S.Prove, so the size of the database is always
polynomial. Next, during each call to S.Prove, c is sampled uniformly at random from
Zdinp and b is computed as b = F (c) ·y−m. So F (c) has min entropy ω(log2(λ)), and c

also has min-entropy ω(log2(λ)) due to the randomness of F (c). Then the probability

that (y,b, ∗) appears in the database is ≤ poly(λ) · 2−ω(log2(λ)) = negl(λ).

Likewise, in GReal, the probability is negligible that Prove(x,y) outputs a value b,
such that (y,b) has been previously been queried to H. The Prove algorithm samples

a
$← Zdinp and computes b = F (a). Then the min-entropy of b is ω(log2(λ)), so the

probability that (y,b) was previously queried to H is ≤ poly(λ) · 2−ω(log2(λ)) = negl(λ).

3. On any proof query (x,y) (where F (x) = y), the output distributions of S.Prove(y)
and Prove(x,y) are statistically close.

In GIdeal, let us condition on the event that S.Prove(y) never outputs ⊥. Since this
occurs with overwhelming probability, this changes the output distribution of the proof
queries negligibly. Next, the values (b,S.RO(y,b), c) have the following distribution:
c and S.RO(y,b) are uniformly and independently random. Finally, b is the unique
value for which:

F (c) = yS.RO(y,b) · b

3

https://toc.cryptobook.us/book.pdf#subsection.19.5.4


CS 276, Fall 2024 Prof. Sanjam Garg

In GReal, let us condition on the event that Prove(x,y) outputs a value b, such that (y,b)
has not previously been queried to H by the adversary. Then the values (b,H(y,b), c)
have the following distribution: c is uniformly random due to the randomness of a.
H(y,b) is uniformly and independently random. Finally, b is the unique value for
which

F (c) = yH(y,b) · b

The distribution of (b,H(y,b), c) in GReal is the same as the distribution of (b,S.RO(y,b), c)
in GIdeal.

4. In summary, the adversary’s view in GReal and GIdeal are statistically close, so

|Pr[A → 1 in GReal]− Pr[A → 1 in GIdeal]| = negl(λ)

Then the NIZK satisfies zero-knowledge with the simulator S.

Lemma 1.6 For all PPT simulation soundness adversaries B, Pr[B wins GSS] = negl(λ).

Proof. We will reduce to the soundness of the interactive sigma protocol from homework
8.

1. We showed in HW 8 that the sigma protocol satisfies knowledge soundness, which
says that for any y, if there exists a cheating prover P ∗ that can convince the verifier
to accept y with non-negligible probability, then we can extract from this prover – with
non-negligible probability – a witness x that satisfies F (x) = y.

Knowledge soundness implies (regular) soundness, which is defined as follows. The
sigma protocol satisfies regular soundness if for any given value y /∈ Im(F ), no cheating
prover can convince the honest verifier to accept y, except with negligible probability.

If the protocol did not satisfy regular soundness, then there would exist a cheating
prover that could convince the verifier to accept y /∈ Im(F ) with non-negligible prob-
ability. Then we could use our knowledge soundness extractor to extract a value x
such that F (x) = y. However, this is impossible because y /∈ Im(F ), so no such x
exists. Therefore, the protocol must satisfy regular soundness in addition to knowledge
soundness.

2. Next, if there exists an adversary ASS that wins the simulation soundness game GSS
with non-negligible probability, then we can construct an adversary AΣ that breaks the
soundness of the sigma protocol from homework 8.

Construction of AΣ:

(a) Let q = poly(λ) be an upper bound on the number of queries that ASS makes to

S.RO during GSS. Sample a query i
$← [q + 1].

(b) Run S and ASS in a simulation of GSS, and allow ASS to query S.Prove and S.RO.

On the i-th query to S.RO, which has input (yi,bi), AΣ sends (yi,bi) to the
sigma protocol’s verifier and receives a uniformly random mi ∈ Zp. Then AΣ adds
(yi,bi,mi) to the database and responds to the S.RO query with mi.

4



CS 276, Fall 2024 Prof. Sanjam Garg

(c) At the end of the simulation of GSS, ASS outputs y∗ and π∗ = (b∗, c∗). AΣ queries
S.RO(y∗,b∗) to obtain m∗.

(d) If ASS’s output satisfies y∗ = yi and b∗ = bi, then AΣ sends c∗ to the verifier.

3. Let us consider the case where ASS wins GSS, and its output satisfies y∗ = yi and b∗ =
bi. Then AΣ will convince the sigma protocol’s verifier to accept because S.RO(yi,bi)
equals the mi chosen by the verifier, and

F (c∗) = (y∗)S.RO(y∗,b∗) · b∗ = ymi
i · bi

4. Furthermore, by the end of AΣ’s execution, the database contains the entry (y∗,b∗,m∗)
because AΣ queries S.RO(y∗,b∗) and obtains m∗.

5. Next, (y∗,b∗,m∗) was first added to the database on a call to S.RO, not a call to S.Prove
because otherwise ASS would not have won GSS. If (y∗,b∗,m∗) were first added to the
database on a query to S.Prove, then that query returned π∗ = (b∗, c′) where c′ is the
unique value for which F (c′) = (y∗)m

∗ ·b∗. If ASS’s final output – y∗, π∗ = (b∗, c∗) – is
accepted by the verifier, then c∗ = c′, so (y∗, π∗) was previously generated on a query
to S.Prove. Then ASS will not win GSS.

Therefore, if ASS wins GSS, then (y∗,b∗,m∗) was first added to the database on a call
to S.RO.

6. Next, given that ASS wins GSS, the probability that (y∗,b∗,m∗) was first added to the
database on the i-th query to S.RO is 1

q+1 = nonnegl(λ). This is because i is uniformly

random and independent of ASS’s view. The verifier samples mi
$← Zp, and for every

j 6= i, S.RO also samples mj uniformly from Zp, so ASS’s view is the same for any value
of i that AΣ chose.

7. In summary, with non-negligible probability, ASS wins GSS, and (y∗,b∗,m∗) was first
added to the database on the i-th query to S.RO. In this case, AΣ convinces the verifier
to accept a false statement, which violates soundness.

5


	Simulation-Sound NIZKs

