CS 276: Homework 8

Due Date: Saturday November 16th, 2024 at 8:59pm via Gradescope

1 A Proof System for Knowledge of a Preimage

We will study a general proof system to prove knowledge of a secret preimage \mathbf{x} of some public output \mathbf{y} , for any homomorphic function over a cryptographic group. This protocol generalizes many proof systems, including the Schnorr protocol (that proves knowledge of the discrete log of a group element) and the Chaum-Pedersen protocol (that proves that a given triple of group elements is a DDH triple).

Definitions: Let \mathbb{G} be a cryptographic group of prime order p, where $\frac{1}{p} = \mathsf{negl}(\lambda)$. Let $d_{in}, d_{out} \in \mathbb{N}$ be the dimensions of the input and output spaces, respectively. A function F mapping $\mathbb{Z}_p^{d_{in}} \to \mathbb{G}^{d_{out}}$ is homomorphic if for any $\mathbf{x}, \mathbf{x}' \in \mathbb{Z}_p^{d_{in}}, F(\mathbf{x} + \mathbf{x}') = F(\mathbf{x}) \cdot F(\mathbf{x}')$.

The proof system will prove knowledge of a secret preimage \mathbf{x} of a public output \mathbf{y} . An *instance* of the language L is any tuple (F, \mathbf{y}) such that F is a homomorphic function mapping $\mathbb{Z}_p^{d_{in}} \to \mathbb{G}^{d_{out}}$, and $\mathbf{y} \in \mathsf{Im}(F)$. The corresponding *witness* is an input $\mathbf{x} \in \mathbb{Z}_p^{d_{in}}$ such that $F(\mathbf{x}) = \mathbf{y}$.

For example, if we set $F(\mathbf{x}) = g^{\mathbf{x}}$, then we obtain a protocol to prove knowledge of the discrete log \mathbf{x} of a given group element \mathbf{y} . This is essentially the Schnorr protocol. If we set $F(\mathbf{x}) = (g^{\mathbf{x}}, h^{\mathbf{x}})$, then we obtain a protocol to prove that $(g^{\mathbf{x}}, h, h^{\mathbf{x}})$ are a DDH triple, which is essentially the Chaum-Pedersen protocol.

The Protocol:

- 1. P samples $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{d_{in}}$, computes $\mathbf{b} = F(\mathbf{a})$, and sends \mathbf{b} to V.
- 2. V samples $m \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and sends m to P.
- 3. *P* computes $\mathbf{c} = m \cdot \mathbf{x} + \mathbf{a}$ and sends \mathbf{c} to *V*.
- 4. V checks whether

$$F(\mathbf{c}) = \mathbf{v}^m \cdot \mathbf{b}$$

If so, V outputs accept. If not, V outputs reject.

Properties of the Protocol: Let P and V be the honest prover and honest verifier, who must follow the protocol. Let P^* and V^* be a dishonest prover and verifier, who may deviate from the protocol arbitrarily. Next, the *transcript* of the protocol is $(\mathbf{b}, m, \mathbf{c})$, the list of messages sent between the prover and verifier during the protocol.

The protocol should satisfy the following properties:

• Completeness: If $\mathbf{y} = F(\mathbf{x})$, then the protocol between $P(F, \mathbf{y}, \mathbf{x})$ and $V(F, \mathbf{y})$ will result in accept with probability 1.

¹Note that the typical group operation for \mathbb{Z}_p is addition, and the group operation for \mathbb{G} is multiplication, so the homomorphic property simply states that applying the group operation to the inputs before applying F is equivalent to applying the group operation to the outputs after applying F.

• Knowledge Soundness: There exists an extractor E that runs in expected polynomial time such that for every F and every $\mathbf{y} \in \mathbb{G}^{d_{out}}$, if $\Pr[\langle P^*, V \rangle(F, \mathbf{y}) \to \mathsf{accept}]$ is non-negligible, then $\Pr[F(\mathbf{x}') = \mathbf{y} : \mathbf{x}' \leftarrow E^{P^*}(F, \mathbf{y})]$ is non-negligible as well.

The notation $\langle P^*, V \rangle(F, \mathbf{y}) \to \mathsf{accept}$ is the event that the interaction between a dishonest prover P^* and the honest verifier V on inputs (F, \mathbf{y}) results in accept . The notation E^{P^*} means that E gets black-box access to P^* , which includes the ability to rewind P^* .

• Honest-Verifier Zero-Knowledge: For any valid witness-instance tuple $(\mathbf{x}, \mathbf{y}, F)$, which satisfies $\mathbf{y} = F(\mathbf{x})$, the transcript of the protocol between $P(F, \mathbf{y}, \mathbf{x})$ and $V(F, \mathbf{y})$ can be efficiently simulated given only (F, \mathbf{y}) .

Question: Prove that the protocol given above satisfies completeness, knowledge soundness, and honest-verifier zero-knowledge. Your proof should not require any computational assumptions.