
CS 276, Fall 2024 Prof. Sanjam Garg

CS 276: Homework 8
Due Date: Saturday November 16th, 2024 at 8:59pm via Gradescope

1 A Proof System for Knowledge of a Preimage

We will study a general proof system to prove knowledge of a secret preimage x of some
public output y, for any homomorphic function over a cryptographic group. This protocol
generalizes many proof systems, including the Schnorr protocol (that proves knowledge of
the discrete log of a group element) and the Chaum-Pedersen protocol (that proves that a
given triple of group elements is a DDH triple).

Definitions: Let G be a cryptographic group of prime order p, where 1
p = negl(λ). Let

din, dout ∈ N be the dimensions of the input and output spaces, respectively. A function F
mapping Zdin

p → Gdout is homomorphic if for any x,x′ ∈ Zdin
p , F (x + x′) = F (x) · F (x′). 1

The proof system will prove knowledge of a secret preimage x of a public output y. An
instance of the language L is any tuple (F,y) such that F is a homomorphic function mapping
Zdin
p → Gdout , and y ∈ Im(F). The corresponding witness is an input x ∈ Zdin

p such that
F (x) = y.

For example, if we set F (x) = gx, then we obtain a protocol to prove knowledge of the
discrete log x of a given group element y. This is essentially the Schnorr protocol. If we set
F (x) = (gx, hx), then we obtain a protocol to prove that (gx, h, hx) are a DDH triple, which
is essentially the Chaum-Pedersen protocol.

The Protocol:

1. P samples a
$← Zdin

p , computes b = F (a), and sends b to V .

2. V samples m
$← Zp and sends m to P .

3. P computes c = m · x + a and sends c to V .

4. V checks whether
F (c) = ym · b

If so, V outputs accept. If not, V outputs reject.

Properties of the Protocol: Let P and V be the honest prover and honest verifier, who
must follow the protocol. Let P ∗ and V ∗ be a dishonest prover and verifier, who may deviate
from the protocol arbitrarily. Next, the transcript of the protocol is (b,m, c), the list of
messages sent between the prover and verifier during the protocol.

The protocol should satisfy the following properties:

• Completeness: If y = F (x), then the protocol between P (F,y,x) and V (F,y) will
result in accept with probability 1.

1Note that the typical group operation for Zp is addition, and the group operation for G is multiplication,
so the homomorphic property simply states that applying the group operation to the inputs before applying
F is equivalent to applying the group operation to the outputs after applying F .

1

CS 276, Fall 2024 Prof. Sanjam Garg

• Knowledge Soundness:2 There exists an extractor E that runs in expected polynomial
time such that for every F and every y ∈ Gdout , if Pr[〈P ∗, V 〉(F,y) → accept] is non-
negligible, then Pr[F (x′) = y : x′ ← EP ∗(F,y)] is non-negligible as well.

The notation 〈P ∗, V 〉(F,y)→ accept is the event that the interaction between a dishon-
est prover P ∗ and the honest verifier V on inputs (F,y) results in accept. The notation
EP ∗ means that E gets black-box access to P ∗, which includes the ability to rewind
P ∗.

• Honest-Verifier Zero-Knowledge: For any valid witness-instance tuple (x,y, F), which
satisfies y = F (x), the transcript of the protocol between P (F,y,x) and V (F,y) can
be efficiently simulated given only (F,y).

Question: Prove that the protocol given above satisfies completeness, knowledge sound-
ness, and honest-verifier zero-knowledge. Your proof should not require any computational
assumptions.

Solution This problem comes from Boneh & Shoup, section 19.5.4.

Theorem 1.1 The protocol satisfies completeness.

Proof. If y = F (x), then the protocol will result in accept.
V checks whether:

F (c) = ym · b

We know that y = F (x), b = F (a), c = m · x + a, and F is homomorphic. Then:

ym · b = F (x)m · F (a)

= F (m · x + a)

= F (c)

Then the verifier’s check is equivalent to checking that F (c) = F (c), which passes with
probability 1.

Theorem 1.2 The protocol satisfies knowledge soundness.

Proof. The extractor will run P ∗ on two different challenges, m and m′, by rewinding the
prover. This gives the extractor two linear equations, which uniquely determine x.

The extractor EP ∗ is constructed as follows:

1. E runs P ∗ through one execution of the protocol and plays the role of the verifier. P ∗

outputs b. Then E samples m
$← Zp and sends m to P ∗. Finally, P ∗ outputs c.

2. E rewinds P ∗ to the end of step 1 of the protocol and then runs the rest of the protocol

with a freshly random challenge. E samples m′
$← Zp and sends m′ to P ∗. Finally, P ∗

outputs c′.

2This definition comes almost verbatim from [Kog19].

2

https://toc.cryptobook.us/book.pdf#subsection.19.5.4
https://crypto.stanford.edu/cs355/19sp/lec5.pdf

CS 276, Fall 2024 Prof. Sanjam Garg

3. E checks whether:

m 6= m′

F (c) = ym · b

F (c′) = ym′ · b

If any check fails, then E outputs ⊥ and aborts. Otherwise, E continues.

4. E computes and outputs:

x′ =
c− c′

m−m′

Analysis: If E does not output ⊥ (i.e. the checks pass), then E will correctly compute an
x′ such that y = F (x′).

x′ =
c− c′

m−m′
x′ · (m−m′) + c′ = c

F
[
x′ · (m−m′) + c′

]
= F (c)

F (x′)(m−m
′) · F (c′) = F (c)

F (x′) =
(
F (c) · F (c′)−1

)1/(m−m′)
=
(
ym · b · (ym′ · b)−1

)1/(m−m′)
=
(
ym−m′

)1/(m−m′)
= y

It remains to show that if Pr[〈P ∗, V 〉(F,y)→ accept] is non-negligible, then Pr[EP ∗(F,y) 6→
⊥] is non-negligible as well. This is shown in lemma 1.3.

Lemma 1.3 Let ε = Pr[〈P ∗, V 〉(F,y)→ accept], and let ε be non-negligible. Then

Pr[EP ∗(F,y) 6→ ⊥] ≥ ε2 − ε

p
= nonnegl(λ)

Proof.

1. Let L be a random variable that refers to all of the prover’s random coins and the
value of b that they send as the first message in the protocol. We can assume that
the value of L is fixed by the time the prover has finished sending their first message.
Next, let M and M ′ be random variables that refer to the m and m′ values that the
extractor E samples during the two executions of the protocol. Note that M and M ′ are
uniformly random over Zp, and they are independent of each other and of L. Finally,
let A(L,M) = 1 if the sampled values of L,M lead the prover to generate an accepting
transcript. Then:

Pr[EP ∗(F,y) 6→ ⊥] = Pr
L,M,M ′

[A(L,M) = 1 ∧A(L,M ′) = 1 ∧M 6= M ′]

and ε = Pr[〈P ∗, V 〉(F,y)→ accept] = Pr
L,M

[A(L,M) = 1]

3

CS 276, Fall 2024 Prof. Sanjam Garg

2. Next, for a given value ` that L takes, let G` be the set of all m-values for which
A(`,m) = 1. Then:

ε = Pr
L,M

[A(L,M) = 1]

=
∑
`

Pr
L

[L = `] · Pr
M

[A(`,M) = 1]

= EL

[
|G`|
p

]
Furthermore, for a given `,

Pr
M,M ′

[A(`,M) = 1 ∧A(`,M ′) = 1 ∧M 6= M ′] =
|G`| · (|G`| − 1)

p2

3. Next,

Pr[EP ∗(F,y) 6→ ⊥] = Pr
L,M,M ′

[A(L,M) = 1 ∧A(L,M ′) = 1 ∧M 6= M ′]

=
∑
`

Pr
L

[L = `] · Pr
M,M ′

[A(`,M) = 1 ∧A(`,M ′) = 1 ∧M 6= M ′]

= EL

[
|G`| · (|G`| − 1)

p2

]
= EL

[(
|G`|
p

)2
]
− EL

[
|G`|
p2

]
≥
(
EL

[
|G`|
p

])2

− ε

p

= ε2 − ε

p

We used Jensen’s inequality to say that EL

[(
|G`|
p

)2]
≥
(
EL

[
|G`|
p

])2
.

Finally, observe that ε2 − ε
p is non-negligible because ε2 is non-negligible, and ε

p is
negligible.

Theorem 1.4 The protocol satisfies honest-verifier zero-knowledge.

Proof. The simulator S will sample the transcript variables (b,m, c) in a different order
from the regular protocol. The construction of S is as follows:

1. S receives (F,y).

2. S samples m
$← Zp and c

$← Zdin
p , and then computes F (c).

3. S computes
b = F (c) · y−m

and outputs (b,m, c).

4

https://en.wikipedia.org/wiki/Jensen%27s_inequality#Probabilistic_form

CS 276, Fall 2024 Prof. Sanjam Garg

Analysis: S samples (b,m, c) from the same distribution as in the real protocol.
In the real protocol, m is sampled uniformly at random by the honest verifier, and c

is uniformly and independently random due to the randomness of a. Finally, for a given
(y,m, c), b is the unique value for which F (c) = ym · b.

Similarly, S chooses m and c uniformly and independently, and chooses the unique b-value
for which F (c) = ym · b. Therefore, S’s output is identically distributed to the transcript in
the real protocol.

5

	A Proof System for Knowledge of a Preimage

