
CS 276, Fall 2024 Prof. Sanjam Garg

CS 276: Homework 7
Due Date: Friday November 8th, 2024 at 8:59pm via Gradescope

1 Circular-Secure Encryption

1 We saw in lecture that fully homomorphic encryption (FHE) can be constructed from a
leveled FHE scheme that also satisfies circular security. [BGV11] constructed leveled FHE
from LWE, but it is not known whether their scheme satisfies circular security. In fact,
for every leveled FHE scheme that we have, we do not know how to prove circular security
without simply assuming it by fiat.

This begs the question: is circular security hard to prove for every encryption scheme?
In fact it is not. We will prove below that a natural encryption scheme based on LWE is
circular-secure.

Defining Circular Security: Circular security states that the encryption scheme remains
CPA-secure even when the adversary receives Enc(sk).

Definition 1.1 (Circular Security) Given an encryption scheme Π = (Gen,Enc,Dec) and
an adversary A, let us define the circular security game Circ-Game(Π,A, 1λ) to be the same
as the CPA security game except the adversary receives Enc(sk) right after the challenger
runs Gen(1λ).

Π satisfies circular security if for every PPT adversary A,

Pr[Circ-Game(Π,A, 1λ)→ 1] ≤ 1

2
+ negl(λ)

Circular security does not hold for every CPA-secure encryption scheme because in the
CPA security game, the only ciphertexts the adversary sees are encryptions of messages
chosen by the adversary. Since the adversary does not know sk a priori, it will not, except
with negligible probability, receive Enc(sk). So the fact that the circular security game gives
Enc(sk) to the adversary seems to give the adversary additional power.

Question 1: Construct a public key encryption (PKE) scheme (Gen′,Enc′,Dec′) that is
CPA-secure and correct, but not circular-secure. Your construction can start with a CPA-
secure PKE scheme (Gen,Enc,Dec) as well as any other primitive implied by that primitive.

Tip: In your answer, you should prove that your construction satisfies CPA security and
correctness, and does not satisfy circular security.

Solution
(Gen′,Enc′,Dec′) will be similar to (Gen,Enc,Dec) but with the following main difference.

Enc′(pk,m) will test if m is good at decrypting the encryption of a random message. m = sk
will pass the test, and any messages that the CPA adversary can find will fail the test with
overwhelming probability. Next, Enc′ outputs m in the clear if m passes the test. This means
that Enc′(pk, sk) will leak sk, but any ciphertext in the CPA security game will not.

1This problem is based on [Vai23]
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• Gen′(1λ): Same as Gen(1λ).

• Enc′(pk,m):

1. Sample r
$← {0, 1}λ, and compute r′ = Dec(m,Enc(pk, r)).

(a) Case 1: If r′ = r, then set aux = m.

(b) Case 2: Otherwise, set aux = ⊥.

2. Compute cm = Enc(pk,m) and output c = (cm, aux).

• Dec(sk, c): Output Dec(sk, cm).

Lemma 1.2 (Gen′,Enc′,Dec′) is correct.

Proof. This follows from the correctness of (Gen,Enc,Dec).

Dec′(sk,Enc′(pk,m)) = Dec(sk,Enc(pk,m))

For any message m, Dec(sk,Enc(pk,m)) = m with overwhelming probability.

Lemma 1.3 (Gen′,Enc′,Dec′) is CPA-secure.

Proof.

1. Let us consider some hybrids:

• H0: The CPA security game for (Gen′,Enc′,Dec′). In particular, when the chal-
lenger computes cb = Enc′(pk,mb), they check whether r = Dec(mb,Enc(pk, r)) for
a random r ∈ {0, 1}λ. If so, they set aux = m. If not, they set aux = ⊥.

• H1: Same asH0 except that the challenger checks whether r = Dec(mb,Enc(pk, 0)).

• H2: Same as H1 except that the challenger always sets aux = ⊥ (never aux = m).

2. We claim that |Pr[H0 → 1]− Pr[H1 → 1]| = negl(λ), by the CPA security of (Gen,Enc,Dec).
In other words, Enc(pk, r) and Enc(pk, 0) are indistinguishable.

3. InH1, the probability that r = Dec(mb,Enc(pk, 0)) is negligible because Dec(mb,Enc(pk, 0))
is independent of r, and r is uniformly random over {0, 1}λ. Then the probability that
H1 sets aux = m is negligible, so

|Pr[H1 → 1]− Pr[H2 → 1]| = negl(λ)

4. H2 is equivalent to the CPA security game for (Gen,Enc,Dec). The only difference is
that Enc′(pk,mb) outputs (Enc(pk,mb),⊥), but the ⊥ is useless to the adversary. Since
(Gen,Enc,Dec) is CPA-secure,

Pr[H2 → 1] = negl(λ)
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5. Putting everything together, we have that

Pr[H0 → 1] = negl(λ)

so (Gen′,Enc′,Dec′) is CPA-secure.

Lemma 1.4 (Gen′,Enc′,Dec′) is not circular-secure.

Proof. First, we will show that with overwhelming probability, Enc′(pk, sk) returns aux = sk.
In Enc′(pk, sk), the function checks whether r = Dec(sk,Enc(pk, r)). By the correctness of
(Gen,Enc,Dec),

Pr[Dec(sk,Enc(pk, r)) = r] ≥ 1− negl(λ)

Then with overwhelming probability, Enc′(pk, sk) executes case 1 and outputs aux = sk.
Next, in the circular security game, the adversary receives csk = Enc′(pk, sk), which we

assume includes aux = sk. Then we will construct an adversary to break circular security as
follows:

1. Receive (pk, csk) from the challenger.

2. Send two distinct messages (m0,m1) to the challenger and receive cb = Enc′(pk,mb).

3. Compute m′ = Dec(sk, cb). If m′ = m0, then output 0. Else if m′ = m1, then output 1.

Else, sample b′
$← {0, 1} and output b′.

By the correctness of (Gen,Enc,Dec), Dec(sk, cb) = mb with overwhelming probability, in
which case, the adversary correctly guesses b. This adversary breaks circular-security because
it wins the game with overwhelming advantage.

Now we will consider an encryption scheme that is circular-secure. The following secret-
key encryption scheme is correct and CPA-secure, assuming LWE.2

• Gen(1n) : Sample s
$← {0, 1}n and output sk = s.

• Enc(sk,m) : Let m ∈ {0, 1}m for any m = poly(n). Sample A
$← Zn×mq and e ← χm.

Finally compute

u = AT · s + e +
⌊q

2

⌋
·m

and output c = (A,u)

• Dec(sk, c) : Compute
~µ = u−AT · s

For each index i ∈ [m], if
∣∣~µi − ⌊ q2⌋∣∣ ≤ q/4, then set m′i = 1. Else set m′i = 0. Finally,

output m′ = (m′1, . . . ,m
′
m).

2We will not state the parameters explicitly for this scheme, but they can be assumed to be similar to the
parameters of the IBE scheme from homework 6.
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Question 2: Prove that the encryption scheme constructed above is circular-secure, as-
suming that it is CPA-secure.

Solution The only extra information available to the adversary in the circular security
game, when compared to the CPA security game, is csk = Enc(sk, sk). We will show in
lemma 1.5 that csk can be computed in the CPA security game as well by querying Enc(sk,0)
and then doing some post-processing. This means that the circular security game gives the
adversary as much power as the CPA security game, so the CPA security of the encryption
scheme implies circular security as well.

Lemma 1.5 For a given sk, the distribution of Enc(sk, sk) can be perfectly simulated using
one query to Enc(sk,0), where 0 ∈ Znq .

Proof.
Procedure to compute csk = Enc(sk, sk):

1. Receive c0 = Enc(sk,0) = (A0,u0), where 0 ∈ Znq , A0
$← Zn×nq , and u0 = AT

0 · s + e
for some e← χn.

2. Compute

Ask = A0 −
⌊q

2

⌋
· In

usk = u0

where In is the n× n identity matrix. Then output csk = (Ask,usk).

Note that Ask is uniformly random in Zn×nq , due to the randomness of A0. Subtracting⌊ q
2

⌋
· In from a uniformly random matrix still produces a uniformly random matrix.
Next, note that

usk = u0 = AT
0 · s + e

=
(
AT

sk +
⌊q

2

⌋
· In
)
· s + e

= AT
sk · s + e +

⌊q
2

⌋
· s

This is exactly the distribution of usk that Enc produces. In summary, for a given sk, the
procedure to compute csk given above samples csk from the same distribution as Enc(sk, sk).

Theorem 1.6 The encryption scheme given above is circular-secure assuming that it is CPA-
secure.

Proof. If there exists an adversary Acirc that breaks the circular security of the encryption
scheme, then we can construct an adversary ACPA that breaks the CPA security of the
encryption scheme.
Construction of ACPA:

1. Request Enc(sk,0), where 0 ∈ Znq , and then use the procedure to compute csk given
above. Then give csk to Acirc.
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2. Whenever Acirc needs to communicate with the challenger, ACPA forwards Acirc’s
messages to the challenger and forwards the challenger’s responses back to Acirc.

3. When Acirc outputs b′, ACPA outputs b′ as well.

ACPA correctly simulates the circular security game with Acirc as the adversary. Further-
more, whenever Acirc wins the simulated circular security game by guessing b′ = b, ACPA
wins the CPA security game as well.
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