CS 276: Homework 6

Due Date: Saturday November 2nd, 2024 at 8:59pm via Gradescope

1 The OR of Two Hash Proof Systems

We will present a hash proof system for the language of DDH tuples and then build a hash proof system for the OR of two such proof systems.

Definition 1.1 (Hash Proof System) A hash proof system (HPS) is a tuple of algorithms (Gen, SKHash, PKHash) with the following syntax:

- Gen takes a security parameter 1^{λ} and outputs a public key pk and a secret key sk.
- SKHash: Takes sk and an instance $x \in \mathcal{X}$ and outputs $y \in \mathcal{Y}$.
- PKHash: Takes pk, an instance $x \in \mathcal{X}$, and a witness w and outputs $y \in \mathcal{Y}$.

Note that \mathcal{X} is the input space, and \mathcal{Y} is the output space. The HPS satisfies the following properties:

- Correctness: If $x \in L$ and w is a valid witness for x, then SKHash(sk, x) = PKHash(pk, x, w).
- Smoothness: For any $x \notin L$, the following distributions are identical:

 $\{(\mathsf{pk}, y) : (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda}), y \leftarrow \mathsf{SKHash}(\mathsf{sk}, x)\}$ $\{(\mathsf{pk}, y) : (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda}), y \xleftarrow{\$} \mathcal{Y}\}$

1.1 HPS for DDH tuples

We will present an HPS for the language of DDH tuples.

Let \mathbb{G} be a cyclic group of order p, where p is a large prime. Let g, h be two generators of \mathbb{G} . Let the DDH language L be the following:

$$L = \{ (g^w, h^w) \in \mathbb{G}^2 : w \in \mathbb{Z}_p \}$$

1

Let $\mathcal{X} = \mathbb{G}^2$, let $x = (a, b) \in \mathcal{X}$, and let $\mathcal{Y} = \mathbb{G}$. For any tuple $x = (g^w, h^w) \in L$, let w serve as the witness. Then we can construct a hash proof system for L as follows:

Definition 1.2 (HPS For The DDH Language L)

- Gen (1^{λ}) : Sample sk = $(r, s) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$. Let pk = $g^r \cdot h^s$. Then output (pk, sk).
- SKHash(sk, x): Output $y = a^r \cdot b^s$.
- PKHash(pk, x, w): Output $y = pk^w$.

¹Note that the DDH problem asks an adversary to distinguish (g, h, g^w, h^w) from (g, h, g^w, h^v) , for $h \stackrel{\$}{\leftarrow} \mathbb{G}$ and $(w, v) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$, so the ability to decide whether a given tuple belongs to L is sufficient to solve DDH. **Question 1:** Prove that the HPS constructed above satisfies correctness and smoothness.

1.2 HPS for the OR of two languages

Now we will construct a HPS for the OR of two DDH languages, with the help of a bilinear map.

Let \mathbb{G}_0 and \mathbb{G}_1 be cyclic groups of order p, where p is a large prime. Let (g_0, h_0) be generators of \mathbb{G}_0 , and let (g_1, h_1) be generators of \mathbb{G}_1 . Let us define the following languages:

$$L_{0} = \{ (g_{0}^{w}, h_{0}^{w}) \in \mathbb{G}_{0}^{2} : w \in \mathbb{Z}_{p} \}$$

$$L_{1} = \{ (g_{1}^{w}, h_{1}^{w}) \in \mathbb{G}_{1}^{2} : w \in \mathbb{Z}_{p} \}$$

$$L_{\vee} = \{ (a_{0}, b_{0}, a_{1}, b_{1}) \in \mathbb{G}_{0}^{2} \times \mathbb{G}_{1}^{2} : (a_{0}, b_{0}) \in L_{0} \lor (a_{1}, b_{1}) \in L_{1} \}$$

Let $x = (a_0, b_0, a_1, b_1)$, and let the witness for $x \in L_{\vee}$ be a value $w \in \mathbb{Z}_p$ such that either (1) $a_0 = g_0^w$ and $b_0 = h_0^w$ or (2) $a_1 = g_1^w$ and $b_1 = h_1^w$.

Furthermore, let $e : \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$ be an efficiently computable pairing function that satisfies:

$$e(g_0^r, g_1^s) = e(g_0, g_1)^{r \cdot s}$$

for any $r, s \in \mathbb{Z}_p$.

Now, we can construct a HPS for L_{\vee} .

Definition 1.3 (HPS For L_{\vee})

• Gen (1^{λ}) : Sample sk = $(r, s, t, u) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^4$. Compute

$$\mathsf{pk} = (\mathsf{pk}_0, \mathsf{pk}_1, \mathsf{pk}_2, \mathsf{pk}_3) = \left(g_0^r \cdot h_0^t, g_0^s \cdot h_0^u, g_1^r \cdot h_1^s, g_1^t \cdot h_1^u\right)$$

Finally, output (pk, sk).

• SKHash(sk, x): Given $x = (a_0, b_0, a_1, b_1)$, compute and output

$$y = e(a_0, a_1)^r \cdot e(a_0, b_1)^s \cdot e(b_0, a_1)^t \cdot e(b_0, b_1)^u$$

• PKHash(pk, x, w): If $a_0 = g_0^w$ and $b_0 = h_0^w$ ((a_0, b_0) $\in L_0$), then compute and output

$$y = e(\mathsf{pk}_0, a_1)^w \cdot e(\mathsf{pk}_1, b_1)^w$$

If $a_1 = g_1^w$ and $b_1 = h_1^w$ ((a_1, b_1) $\in L_1$), then compute and output

$$y = e(a_0, \mathsf{pk}_2)^w \cdot e(b_0, \mathsf{pk}_3)^w$$

Question 2: Prove that the HPS for L_{\vee} satisfies correctness and smoothness.

2 Identity-Based Encryption from LWE

We will construct identity-based encryption (IBE) and prove security from the decisional LWE assumption.

Parameters and Notation: Let *n* be the security parameter. Let $q \in [\frac{n^4}{2}, n^4]$ be a large prime modulus. Let $m = 20n \log n$, $\alpha = \frac{1}{m^4 \cdot \log^2 m}$, $L = m^{2.5}$, $s = m^{2.5} \cdot \log m$. Let χ be a Gaussian-weighted probability distribution over \mathbb{Z}_q with mean 0 and standard

Let χ be a Gaussian-weighted probability distribution over \mathbb{Z}_q with mean 0 and standard deviation $\frac{q \cdot \alpha}{\sqrt{2\pi}}$.

Let $H: \{0,1\}^* \to \mathbb{Z}_q^n$ be a random oracle.

Definition 2.1 (Decisional LWE Assumption) For any $m' \ge m$, the following two distributions are computationally indistinguishable:

$$\begin{split} \{(\mathbf{A}, \mathbf{u}) : \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m'}, \mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n, \mathbf{e} \stackrel{\$}{\leftarrow} \chi^{m'}, \mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e} \} \\ \{(\mathbf{A}, \mathbf{u}) : \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m'}, \mathbf{u} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m'} \} \end{split}$$

Helper Functions: Our construction will use the following helper functions:

- TrapdoorSample(1ⁿ) → A, T: Samples two matrices A ← Z_q^{n×m} and T ← Z_q^{m×m} such that A is statistically close to uniformly random, ker(A) = column-span(T), and every column of T is short: ||T · ê_i|| ≤ L for all i ∈ [m]. In other words, T is a short basis of ker(A).
- PreimageSample(A, T, v): Samples e such that A · e = v mod q from a distribution proportional to a discrete Gaussian with mean 0 and standard deviation s. In other words, e is a short vector in the preimage of v.

The following lemma will be useful.

Lemma 2.2 For $\mathbf{v} \in \mathbb{Z}_q^m$ sampled from a discrete Gaussian distribution with mean **0** and a sufficiently large standard deviation s, $\Pr[\|\mathbf{v}\| > s\sqrt{m}] \leq \operatorname{negl}(m)$.

Construction:

• $\mathsf{Setup}(1^n)$: Sample

 $\mathbf{A}, \mathbf{T} \leftarrow \mathsf{TrapdoorSample}(1^n)$

Finally output mpk = A and msk = T.

• Gen(msk, ID): Compute $\mathbf{v} = H(ID)$. Then sample a short vector

 $\mathbf{e} \leftarrow \mathsf{PreimageSample}(\mathbf{A}, \mathbf{T}, \mathbf{v})$

Note that $\mathbf{A} \cdot \mathbf{e} = \mathbf{v} \mod q$. Finally, output $\mathsf{sk}_{ID} = \mathbf{e}$.

• Enc(mpk, *ID*, *b*): Let $b \in \{0, 1\}$. Sample $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$, $\mathbf{x} \leftarrow \chi^m$ and $x \leftarrow \chi$. Then compute $\mathbf{v} = H(ID)$, and

$$\mathbf{p} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{x}$$
$$c = \mathbf{v}^T \cdot \mathbf{s} + x + b \cdot |q/2|$$

Output $ct = (\mathbf{p}, c)$.

• $Dec(sk_{ID}, ct)$: Parse $sk_{ID} = e$ and ct = (p, c). Compute

$$\mu = c - \mathbf{e}^T \cdot \mathbf{p}$$

If $|\mu - q/2| \le q/4$, then output b' = 1. Otherwise, output b' = 0.

Question: Prove that the IBE construction given above is correct (except with negligible probability) and secure assuming decisional LWE (def. 2.1).