CS 276: Homework 6

Due Date: Saturday November 2nd, 2024 at 8:59pm via Gradescope

1 The OR of Two Hash Proof Systems

We will present a hash proof system for the language of DDH tuples and then build a hash proof system for the OR of two such proof systems.

Definition 1.1 (Hash Proof System) A hash proof system (HPS) is a tuple of algorithms (Gen, SKHash, PKHash) with the following syntax:

- Gen takes a security parameter 1^{λ} and outputs a public key pk and a secret key sk.
- SKHash: Takes sk and an instance $x \in \mathcal{X}$ and outputs $y \in \mathcal{Y}$.
- PKHash: Takes pk, an instance $x \in \mathcal{X}$, and a witness w and outputs $y \in \mathcal{Y}$.

Note that X is the input space, and Y is the output space. The HPS satisfies the following properties:

- Correctness: If $x \in L$ and w is a valid witness for x, then SKHash(sk, x) = PKHash(pk, x, w).
- Smoothness: For any $x \notin L$, the following distributions are identical:

 $\{(\mathsf{pk}, y) : (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda}), y \leftarrow \mathsf{SKHash}(\mathsf{sk}, x)\}$ $\{(\mathsf{pk}, y) : (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^\lambda), y \stackrel{\$}{\leftarrow} \mathcal{Y}\}$

1.1 HPS for DDH tuples

We will present an HPS for the language of DDH tuples.

Let \mathbb{G} be a cyclic group of order p, where p is a large prime. Let g, h be two generators of \mathbb{G} . Let the DDH language L be the following:

$$
L = \{(g^w, h^w) \in \mathbb{G}^2 : w \in \mathbb{Z}_p\}
$$

[1](#page-0-0)

Let $\mathcal{X} = \mathbb{G}^2$, let $x = (a, b) \in \mathcal{X}$, and let $\mathcal{Y} = \mathbb{G}$. For any tuple $x = (g^w, h^w) \in L$, let w serve as the witness. Then we can construct a hash proof system for L as follows:

Definition 1.2 (HPS For The DDH Language L)

- Gen (1^{λ}) : $Sample$ sk = $(r, s) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$. Let $\mathsf{pk} = g^r \cdot h^s$. Then output $(\mathsf{pk}, \mathsf{sk})$.
- SKHash(sk, x): Output $y = a^r \cdot b^s$.
- PKHash(pk, x, w): Output $y = pk^w$.

¹Note that the DDH problem asks an adversary to distinguish (g, h, g^w, h^w) from (g, h, g^w, h^v) , for $h \stackrel{\$}{\leftarrow} \mathbb{G}$ and $(w, v) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$, so the ability to decide whether a given tuple belongs to L is sufficient to solve DDH.

Question 1: Prove that the HPS constructed above satisfies correctness and smoothness.

1.2 HPS for the OR of two languages

Now we will construct a HPS for the OR of two DDH languages, with the help of a bilinear map.

Let \mathbb{G}_0 and \mathbb{G}_1 be cyclic groups of order p, where p is a large prime. Let (g_0, h_0) be generators of \mathbb{G}_0 , and let (g_1, h_1) be generators of \mathbb{G}_1 . Let us define the following languages:

$$
L_0 = \{(g_0^w, h_0^w) \in \mathbb{G}_0^2 : w \in \mathbb{Z}_p\}
$$

\n
$$
L_1 = \{(g_1^w, h_1^w) \in \mathbb{G}_1^2 : w \in \mathbb{Z}_p\}
$$

\n
$$
L_\vee = \{(a_0, b_0, a_1, b_1) \in \mathbb{G}_0^2 \times \mathbb{G}_1^2 : (a_0, b_0) \in L_0 \vee (a_1, b_1) \in L_1\}
$$

Let $x = (a_0, b_0, a_1, b_1)$, and let the witness for $x \in L_\vee$ be a value $w \in \mathbb{Z}_p$ such that either (1) $a_0 = g_0^w$ and $b_0 = h_0^w$ or (2) $a_1 = g_1^w$ and $b_1 = h_1^w$.

Furthermore, let $e : \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$ be an efficiently computable pairing function that satisfies:

$$
e(g_0^r, g_1^s) = e(g_0, g_1)^{r \cdot s}
$$

for any $r, s \in \mathbb{Z}_p$.

Now, we can construct a HPS for L_{\vee} .

Definition 1.3 (HPS For L_v)

• Gen (1^{λ}) : $Sample$ sk $=(r,s,t,u) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^4$. $Compute$

$$
\mathsf{pk} = (\mathsf{pk}_0, \mathsf{pk}_1, \mathsf{pk}_2, \mathsf{pk}_3) = \left(g_0^r \cdot h_0^t, g_0^s \cdot h_0^u, g_1^r \cdot h_1^s, g_1^t \cdot h_1^u\right)
$$

Finally, output (pk,sk).

• SKHash(sk, x): Given $x = (a_0, b_0, a_1, b_1)$, compute and output

$$
y = e(a_0, a_1)^r \cdot e(a_0, b_1)^s \cdot e(b_0, a_1)^t \cdot e(b_0, b_1)^u
$$

• PKHash(pk, x, w): If $a_0 = g_0^w$ and $b_0 = h_0^w$ ((a_0, b_0) $\in L_0$), then compute and output

$$
y = e(\mathsf{pk}_0,a_1)^w \cdot e(\mathsf{pk}_1,b_1)^w
$$

If $a_1 = g_1^w$ and $b_1 = h_1^w$ $((a_1, b_1) \in L_1)$, then compute and output

$$
y = e(a_0, \mathsf{pk}_2)^w \cdot e(b_0, \mathsf{pk}_3)^w
$$

Question 2: Prove that the HPS for L_{\vee} satisfies correctness and smoothness.

2 Identity-Based Encryption from LWE

We will construct identity-based encryption (IBE) and prove security from the decisional LWE assumption.

Parameters and Notation: Let *n* be the security parameter. Let $q \in \left[\frac{n^4}{2}\right]$ $\frac{n^4}{2}$, n^4] be a large prime modulus. Let $m = 20n \log n$, $\alpha = \frac{1}{m^4 \cdot \log^2 m}$, $L = m^{2.5}$, $s = m^{2.5} \cdot \log m$.

Let χ be a Gaussian-weighted probability distribution over \mathbb{Z}_q with mean 0 and standard deviation $\frac{q \cdot \alpha}{\sqrt{2\pi}}$.

Let $H: \{0,1\}^* \to \mathbb{Z}_q^n$ be a random oracle.

Definition 2.1 (Decisional LWE Assumption) For any $m' \ge m$, the following two distributions are computationally indistinguishable:

$$
\{(\mathbf{A}, \mathbf{u}) : \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m'}, \mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n, \mathbf{e} \stackrel{\$}{\leftarrow} \chi^{m'}, \mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e}\}
$$

$$
\{(\mathbf{A}, \mathbf{u}) : \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m'}, \mathbf{u} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m'}\}
$$

Helper Functions: Our construction will use the following helper functions:

- TrapdoorSample $(1^n) \to \mathbf{A}, \mathbf{T}$: Samples two matrices $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and $\mathbf{T} \leftarrow \mathbb{Z}_q^{m \times m}$ such that **A** is statistically close to uniformly random, $\text{ker}(A) = \text{column-span}(T)$, and every column of **T** is short: $\|\mathbf{T} \cdot \hat{e}_i\| \leq L$ for all $i \in [m]$. In other words, **T** is a short basis of $ker(A)$.
- PreimageSample(A, T, v): Samples e such that $A \cdot e = v \mod q$ from a distribution proportional to a discrete Gaussian with mean 0 and standard deviation s. In other words, e is a short vector in the preimage of v.

The following lemma will be useful.

Lemma 2.2 For $\mathbf{v} \in \mathbb{Z}_q^m$ sampled from a discrete Gaussian distribution with mean **0** and a **Definite 2.2** For $\mathbf{v} \in \mathbb{Z}_q$ sumpled from a also electromassion astronomic sufficiently large standard deviation s, $\Pr[\|\mathbf{v}\| > s\sqrt{m}] \leq \mathsf{negl}(m)$.

Construction:

• Setup (1^n) : Sample

 $\mathbf{A}, \mathbf{T} \leftarrow \mathsf{TrapdoorSample}(1^n)$

Finally output $mpk = A$ and $msk = T$.

• Gen(msk, *ID*): Compute $\mathbf{v} = H(ID)$. Then sample a short vector

 $e \leftarrow$ PreimageSample(A, T, v)

Note that $\mathbf{A} \cdot \mathbf{e} = \mathbf{v} \mod q$. Finally, output $\mathsf{sk}_{ID} = \mathbf{e}$.

• Enc(mpk, *ID*, *b*): Let $b \in \{0,1\}$. Sample $s \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$, $s \leftarrow \chi^m$ and $x \leftarrow \chi$. Then compute $\mathbf{v} = H(ID)$, and

$$
\mathbf{p} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{x}
$$

$$
c = \mathbf{v}^T \cdot \mathbf{s} + x + b \cdot |q/2|
$$

Output $ct = (p, c)$.

• Dec(sk_{ID}, ct): Parse sk_{ID} = e and ct = (p, c). Compute

$$
\mu = c - \mathbf{e}^T \cdot \mathbf{p}
$$

If $|\mu - q/2| \leq q/4$, then output $b' = 1$. Otherwise, output $b' = 0$.

Question: Prove that the IBE construction given above is correct (except with negligible probability) and secure assuming decisional LWE (def. [2.1\)](#page-2-0).