
CS 276, Fall 2024 Prof. Sanjam Garg

CS 276: Homework 6
Due Date: Saturday November 2nd, 2024 at 8:59pm via Gradescope

1 The OR of Two Hash Proof Systems

We will present a hash proof system for the language of DDH tuples and then build a hash
proof system for the OR of two such proof systems.

Definition 1.1 (Hash Proof System) A hash proof system (HPS) is a tuple of algorithms
(Gen,SKHash,PKHash) with the following syntax:

• Gen takes a security parameter 1λ and outputs a public key pk and a secret key sk.

• SKHash: Takes sk and an instance x ∈ X and outputs y ∈ Y.

• PKHash: Takes pk, an instance x ∈ X , and a witness w and outputs y ∈ Y.

Note that X is the input space, and Y is the output space.
The HPS satisfies the following properties:

• Correctness: If x ∈ L and w is a valid witness for x, then SKHash(sk, x) = PKHash(pk, x, w).

• Smoothness: For any x /∈ L, the following distributions are identical:

{(pk, y) : (pk, sk)← Gen(1λ), y ← SKHash(sk, x)}

{(pk, y) : (pk, sk)← Gen(1λ), y
$← Y}

1.1 HPS for DDH tuples

We will present an HPS for the language of DDH tuples.
Let G be a cyclic group of order p, where p is a large prime. Let g, h be two generators

of G. Let the DDH language L be the following:

L = {(gw, hw) ∈ G2 : w ∈ Zp}

1

Let X = G2, let x = (a, b) ∈ X , and let Y = G. For any tuple x = (gw, hw) ∈ L, let w
serve as the witness. Then we can construct a hash proof system for L as follows:

Definition 1.2 (HPS For The DDH Language L)

• Gen(1λ): Sample sk = (r, s)
$← Z2

p. Let pk = gr · hs. Then output (pk, sk).

• SKHash(sk, x): Output y = ar · bs.

• PKHash(pk, x, w): Output y = pkw.

1Note that the DDH problem asks an adversary to distinguish (g, h, gw, hw) from (g, h, gw, hv), for h
$← G

and (w, v)
$← Z2

p, so the ability to decide whether a given tuple belongs to L is sufficient to solve DDH.

1

CS 276, Fall 2024 Prof. Sanjam Garg

Question 1: Prove that the HPS constructed above satisfies correctness and smoothness.

Solution The solution is based on [ABP14].

Theorem 1.3 The HPS for L given in definition 1.2 satisfies correctness.

Proof. To prove correctness, it suffices to show that for any sk = (r, s) and any x = (a, b)
and w for which a = gw and b = hw,

SKHash(sk, x) = PKHash(pk, x, w)

That is shown as follows:

SKHash(sk, x) = ar · bs

= (gw)r · (hw)s

= (gr · hs)w

= pkw

= PKHash(pk, x, w)

Theorem 1.4 The HPS for L given in definition 1.2 satisfies smoothness.

Proof. It will help to focus on the discrete log of each group element, because then we can
treat these computations as linear functions. Let h̃, ã, b̃ ∈ Zp be defined such that h = gh̃,

a = gã, and b = gb̃.
Next,

let x̃ = [ã, b̃]T

v = [1, h̃]T

M =
[
v x̃

]
=

[
1 ã

h̃ b̃

]
sk = [r, s]T

Then pk = gr+s·h̃ = gsk
T ·v = g(sk

T ·M)1

SKHash(sk, x) = gr·ã+s·b̃ = gsk
T ·x̃ = g(sk

T ·M)2

To prove smoothness, it suffices to prove that if x /∈ L, then for a uniformly random sk, skT ·v
and skT · x̃ are uniformly random and independent.

If x /∈ L, then b̃ 6= h̃ · ã. Then v and x̃ are not parallel, so M is full-rank. This implies
that for a uniformly random sk, the values of skT · v and skT · x̃ are uniformly random and
independent. As a result, pk and SKHash(sk, x) will be uniformly random and independent
as well.

2

CS 276, Fall 2024 Prof. Sanjam Garg

1.2 HPS for the OR of two languages

Now we will construct a HPS for the OR of two DDH languages, with the help of a bilinear
map.

Let G0 and G1 be cyclic groups of order p, where p is a large prime. Let (g0, h0) be
generators of G0, and let (g1, h1) be generators of G1. Let us define the following languages:

L0 = {(gw0 , hw0) ∈ G2
0 : w ∈ Zp}

L1 = {(gw1 , hw1) ∈ G2
1 : w ∈ Zp}

L∨ = {(a0, b0, a1, b1) ∈ G2
0 ×G2

1 : (a0, b0) ∈ L0 ∨ (a1, b1) ∈ L1}

Let x = (a0, b0, a1, b1), and let the witness for x ∈ L∨ be a value w ∈ Zp such that either (1)
a0 = gw0 and b0 = hw0 or (2) a1 = gw1 and b1 = hw1 .

Furthermore, let e : G0 × G1 → GT be an efficiently computable pairing function that
satisfies:

e(gr0, g
s
1) = e(g0, g1)

r·s

for any r, s ∈ Zp.
Now, we can construct a HPS for L∨.

Definition 1.5 (HPS For L∨)

• Gen(1λ): Sample sk = (r, s, t, u)
$← Z4

p. Compute

pk = (pk0, pk1, pk2, pk3) =
(
gr0 · ht0, gs0 · hu0 , gr1 · hs1, gt1 · hu1

)
Finally, output (pk, sk).

• SKHash(sk, x): Given x = (a0, b0, a1, b1), compute and output

y = e(a0, a1)
r · e(a0, b1)s · e(b0, a1)t · e(b0, b1)u

• PKHash(pk, x, w): If a0 = gw0 and b0 = hw0 ((a0, b0) ∈ L0), then compute and output

y = e(pk0, a1)
w · e(pk1, b1)w

If a1 = gw1 and b1 = hw1 ((a1, b1) ∈ L1), then compute and output

y = e(a0, pk2)
w · e(b0, pk3)w

Question 2: Prove that the HPS for L∨ satisfies correctness and smoothness.

Solution

Claim 1.6 (Correctness) The HPS for L∨ given in def. 1.5 satisfies correctness.

3

CS 276, Fall 2024 Prof. Sanjam Garg

Proof. If (a0, b0) ∈ L0, then SKHash(sk, x) = PKHash(pk, x, w). In this case, a0 = gw0 and
b0 = hw0 .

SKHash(sk, x) = e(a0, a1)
r · e(a0, b1)s · e(b0, a1)t · e(b0, b1)u

= e(g0, a1)
w·r · e(g0, b1)w·s · e(h0, a1)w·t · e(h0, b1)w·u

PKHash(pk, x, w) = e(pk0, a1)
w · e(pk1, b1)w

= e(gr0 · ht0, a1)w · e(gs0 · hu0 , b1)w

= e(g0, a1)
w·r · e(g0, b1)w·s · e(h0, a1)w·t · e(h0, b1)w·u

SKHash(sk, x) = PKHash(pk, x, w)

Next, if (a1, b1) ∈ L1, then SKHash(sk, x) = PKHash(pk, x, w). In this case, a1 = gw1 and
b1 = hw1 .

SKHash(sk, x) = e(a0, a1)
r · e(a0, b1)s · e(b0, a1)t · e(b0, b1)u

= e(a0, g1)
w·r · e(a0, h1)w·s · e(b0, g1)w·t · e(b0, h1)w·u

PKHash(pk, x, w) = e(a0, pk2)
w · e(b0, pk3)w

= e(a0, g
r
1 · hs1)w · e(b0, gt1 · hu1)w

= e(a0, g1)
w·r · e(a0, h1)w·s · e(b0, g1)w·t · e(b0, h1)w·u

SKHash(sk, x) = PKHash(pk, x, w)

Claim 1.7 (Smoothness) The HPS for L∨ given in def. 1.5 satisfies smoothness.

Proof.

1. It helps to focus on the discrete log of each group element because then we can treat
these computations as linear functions. Let h̃0, h̃1, ã0, ã1, b̃0, b̃1 ∈ Zp be defined such
that

h0 = gh̃00 , h1 = gh̃11

a0 = gã00 , a1 = gã11

b0 = gb̃00 , b1 = gb̃11

4

CS 276, Fall 2024 Prof. Sanjam Garg

Then

pk0 = gr+t·h̃00

pk1 = gs+u·h̃00

pk2 = gr+s·h̃11

pk3 = gt+u·h̃11

SKHash(sk, x) = gã0·ã1·r+ã0·b̃1·s+b̃0·ã1·t+b̃0·b̃1·uT

where gT = e(g0, g1).

2. Let us define some vectors and matrices to represent the discrete log of the group
elements above.

let sk = [r, s, t, u]T

p̃k = [r + t · h̃0, s+ u · h̃0, r + s · h̃1, t+ u · h̃1]T

x̃ = [ã0 · ã1, ã0 · b̃1, b̃0 · ã1, b̃0 · b̃1]T

M =


1 0 1 0

0 1 h̃1 0

h̃0 0 0 1

0 h̃0 0 h̃1


Then

SKHash(sk, x) = gsk
T ·x̃

T

p̃k
T

= skT ·M

Note that p̃k
T

= skT ·M uniquely determines the value of pk, and skT · x̃ uniquely
determines the value of SKHash(sk, x).

To prove smoothness, we just need to show that when x /∈ L∨, then for a uniformly
random sk, the values skT ·M and skT · x̃ are uniformly random and independent.

3. The following vector v is perpendicular to the column-span of M.

Let v = [h̃0 · h̃1,−h̃0,−h̃1, 1]T

Then vT ·M = [0, 0, 0, 0]

4. x ∈ L∨ if and only if vT · x̃ = 0.

vT · x̃ = ã0 · ã1 · h̃0 · h̃1 − h̃0 · ã0 · b̃1 − h̃1 · b̃0 · ã1 + b̃0 · b̃1
= ã1 · h̃1 · (ã0 · h̃0 − b̃0) + b̃1 · (b̃0 − ã0 · h̃0)
= (b̃0 − ã0 · h̃0) · (b̃1 − ã1 · h̃1)

5

CS 276, Fall 2024 Prof. Sanjam Garg

Next,

x ∈ L∨ ⇐⇒ (a0, b0) ∈ L0 ∨ (a1, b1) ∈ L1

⇐⇒ b̃0 = ã0 · h̃0 ∨ b̃1 = ã1 · h̃1
⇐⇒ (b̃0 − ã0 · h̃0) · (b̃1 − ã1 · h̃1) = 0

⇐⇒ vT · x̃ = 0

5. If x /∈ L∨, then x̃ is not in the column-span of M because vT · x̃ 6= 0. Then for a

uniformly random sk
$← Z4

p, the values of skT ·M and skT · x̃ are uniformly random and
independent.

6

CS 276, Fall 2024 Prof. Sanjam Garg

2 Identity-Based Encryption from LWE

We will construct identity-based encryption (IBE) and prove security from the decisional
LWE assumption.

Parameters and Notation: Let n be the security parameter. Let q ∈ [n
4

2 , n
4] be a large

prime modulus. Let m = 20n log n, α = 1
m4·log2m , L = m2.5, s = m2.5 · logm.

Let χ be a Gaussian-weighted probability distribution over Zq with mean 0 and standard
deviation q·α√

2π
.

Let H : {0, 1}∗ → Znq be a random oracle.

Definition 2.1 (Decisional LWE Assumption) For any m′ ≥ m, the following two dis-
tributions are computationally indistinguishable:

{(A,u) : A
$← Zn×m

′
q , s

$← Znq , e
$← χm

′
,u = AT · s + e}

{(A,u) : A
$← Zn×m

′
q ,u

$← Zm
′

q }

Helper Functions: Our construction will use the following helper functions:

• TrapdoorSample(1n) → A,T: Samples two matrices A ← Zn×mq and T ← Zm×mq such
that A is statistically close to uniformly random, ker(A) = column-span(T), and every
column of T is short: ‖T · êi‖ ≤ L for all i ∈ [m]. In other words, T is a short basis of
ker(A).

• PreimageSample(A,T,v): Samples e such that A · e = v mod q from a distribution
proportional to a discrete Gaussian with mean 0 and standard deviation s. In other
words, e is a short vector in the preimage of v.

The following lemma will be useful.

Lemma 2.2 For v ∈ Zmq sampled from a discrete Gaussian distribution with mean 0 and a
sufficiently large standard deviation s, Pr[‖v‖ > s

√
m] ≤ negl(m).

Construction:

• Setup(1n): Sample
A,T← TrapdoorSample(1n)

Finally output mpk = A and msk = T.

• Gen(msk, ID): Compute v = H(ID). Then sample a short vector

e← PreimageSample(A,T,v)

Note that A · e = v mod q. Finally, output skID = e.

7

CS 276, Fall 2024 Prof. Sanjam Garg

• Enc(mpk, ID, b): Let b ∈ {0, 1}. Sample s
$← Znq , x ← χm and x ← χ. Then compute

v = H(ID), and

p = AT · s + x

c = vT · s + x+ b · bq/2c

Output ct = (p, c).

• Dec(skID, ct): Parse skID = e and ct = (p, c). Compute

µ = c− eT · p

If |µ− q/2| ≤ q/4, then output b′ = 1. Otherwise, output b′ = 0.

Question: Prove that the IBE construction given above is correct (except with negligible
probability) and secure assuming decisional LWE (def. 2.1).

Solution This problem is based on the IBE construction from [GPV07].

Theorem 2.3 The IBE scheme is correct except with negligible probability.

Proof. For any b ∈ {0, 1}, let us compute Dec(skID,Enc(mpk, ID, b)).

µ = c− eT · p
= vT · s + x+ b · bq/2c − eT ·AT · s− eT · x
= vT · s + x+ b · bq/2c − vT · s− eT · x

µ− b · bq/2c = x− eT · x

With overwhelming probability, eT · x ≤ q/10 and x ≤ q/10 (lemma 2.4), in which case:∣∣µ− b · bq/2c∣∣ ≤ q

10
+

q

10
=
q

5

Then when b = 1,
|µ− q/2| = |µ− b · q/2| ≤ q/4

When b = 0, µ ≤ q/5, so

|µ− q/2| = q/2− µ ≥ q/2− q/5 = .3q > q/4

So Dec(skID,Enc(mpk, ID, b)) will output b.

Lemma 2.4 For sufficiently large n, with overwhelming probability, eT · x ≤ q/10 and x ≤
q/10.

8

CS 276, Fall 2024 Prof. Sanjam Garg

Proof. First, x← χm, where χm is a discrete Gaussian with standard deviation

s′ =

√
m · q · α√

2π

=

√
m · q√

2π ·m4 · log2m
=

q√
2π ·m3.5 · log2m

By lemma 2.2, with overwhelming probability,

‖x‖ ≤ s′
√
m =

q√
2π ·m3 · log2m

Next, e is sampled from a discrete Gaussian with standard deviation s = m2.5 · logm.
Then by lemma 2.2, with overwhelming probability,

‖e‖ ≤ s
√
m = m3 · logm

Then

eT · x ≤ ‖e‖ · ‖x‖

≤ m3 · logm · q√
2π ·m3 · log2m

=
q√

2π · logm

For sufficiently large n and m, q√
2π·logm < q

10 .

Theorem 2.5 The IBE scheme is CPA-secure.

Proof.

The adversary’s view: The adversary receives the public key mpk = A as well as v =
H(ID∗) for the ID∗ under which the challenge ciphertext is computed. Then for a random

message b
$← {0, 1}, the adversary receives Enc(mpk, ID∗, b), which comprises:

p = AT · s + x

c = vT · s + x+ b · bq/2c

We can express these values as follows.

Let A′ = [A||v]

u′ = (p||(vT · s + x)) expressed as a column vector

x′ = (x||x) expressed as a column vector

b = (0m||(b · bq/2c)) expressed as a column vector

Then to phrase things differently, the adversary receives (A′,u′+ b), where A′
$← Zn×(m+1)

q ,

s
$← Znq , x′

$← χm+1, and

u′ = A′T · s + x′

9

CS 276, Fall 2024 Prof. Sanjam Garg

The decisional LWE assumption (def. 2.1) says that this distribution over (A′,u′ + b) is
computationally indistinguishable from

{(A′,u′ + b) : A′
$← Zn×(m+1)

q ,u′
$← Zm+1

q }

Finally, the adversary can also query on any2 ID to learn vectors (vID, eID) for which
v = H(ID) and v = A · e mod q. However, these queries can be simulated by sampling
a random e for each ID, then computing v = A · e mod q, and programming the random
oracle so that H(ID) = v.

Reduction: Given an adversary AIBE that breaks the CPA security of the IBE scheme,
we can construct and adversary ALWE that breaks the decisional LWE assumption.

Construction of ALWE :

1. ALWE receives (A′,u′), where either

(a) A′
$← Zn×(m+1)

q , s
$← Znq , x′

$← χm+1, and u′ = A′T · s + x′

(b) Or A′
$← Zn×(m+1)

q ,u′
$← Zm+1

q

2. ALWE sets mpk to be the first m columns of A′ and v∗ to be the final column of

A′. ALWE samples b
$← {0, 1} and sets b = (0m||(b · bq/2c)). Then ALWE computes

ct = u′ + b.

3. ALWE runs AIBE internally and simulates the CPA security game. AIBE receives mpk.
Then when AIBE chooses the identity of the encryptor ID∗ for the challenge ciphertext,
AIBE receives the challenge ciphertext ct.

4. Whenever AIBE asks for skID or H(ID) for a given ID, ALWE handles these queries
as follows:

(a) If AIBE has previously asked for skID or H(ID) for this particular ID, then ALWE

looks up the value of skID or H(ID) that was computed previously and returns it
to AIBE .

(b) Else if the queried ID is not ID∗, the challenge ID, then ALWE samples e ∈ Zmq
from a discrete Gaussian with mean 0 and standard deviation s and sets skID = e.
Then ALWE computes v = A·e mod q and programs H(ID) = v. Finally, ALWE

returns either skID or H(ID), depending on which value AIBE requested.

(c) Else if the queried ID is ID∗, and H(ID∗) is requested, then ALWE samples

v
$← Znq and returns H(ID∗) = v.

5. Eventually, AIBE outputs a guess b′ for b. ALWE checks whether b′ = b. If so, ALWE

outputs 0. If not, ALWE outputs 1.

2The only exception is that the adversary cannot ask for skID∗ .

10

CS 276, Fall 2024 Prof. Sanjam Garg

Analysis: First, note that ALWE correctly simulates the adversary’s queries. For each ID
that AIBE queries, H(ID) is a uniformly random vector v. And conditioned on the value
of v, skID is a vector e that comes from a Gaussian-weighted distribution with mean 0 and
standard deviation s such that v = A · e mod q.

Next, if ALWE was given a sample from the distribution

{(A′,u′) : A′
$← Zn×(m+1)

q , s
$← Znq ,x′

$← χm+1,u′ = A′T · s + x′}

then ALWE has correctly simulated the CPA security game for the IBE scheme, and AIBE
guesses b′ = b with non-negligible advantage. In this case, ALWE will output 0 with proba-
bility 1

2 + non-negl(n).
On the other hand, if ALWE was given a sample from

{(A′,u′) : A′
$← Zn×(m+1)

q ,u′
$← Zm+1

q }

Then AIBE has no information about b. This is because AIBE receives u′ + b, in which b is
masked by a uniformly random u′. Then AIBE guesses b′ = b with 0 advantage, and ALWE

will output 0 with probability 1
2 .

In summary, ALWE will distinguish the two distributions with non-negligible advantage,
which breaks the decisional LWE assumption. Since decisional LWE is assumed to be true,
then there exists no PPT adversary AIBE that breaks the CPA security of the IBE scheme.

References

[ABP14] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for hash
proof systems: New constructions and applications. Cryptology ePrint Archive,
Paper 2014/483, 2014.

[GPV07] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. Cryptology ePrint Archive, Paper
2007/432, 2007.

11

	The OR of Two Hash Proof Systems
	HPS for DDH tuples
	HPS for the OR of two languages

	Identity-Based Encryption from LWE

