CS 276: Homework 6

Due Date: Saturday November 2nd, 2024 at 8:59pm via Gradescope

1 The OR of Two Hash Proof Systems

We will present a hash proof system for the language of DDH tuples and then build a hash proof system for the OR of two such proof systems.

Definition 1.1 (Hash Proof System) A hash proof system (HPS) is a tuple of algorithms (Gen, SKHash, PKHash) with the following syntax:

- Gen takes a security parameter 1^{λ} and outputs a public key pk and a secret key sk.
- SKHash: Takes sk and an instance $x \in \mathcal{X}$ and outputs $y \in \mathcal{Y}$.
- PKHash: Takes pk, an instance $x \in \mathcal{X}$, and a witness w and outputs $y \in \mathcal{Y}$.

Note that \mathcal{X} is the input space, and \mathcal{Y} is the output space. The HPS satisfies the following properties:

- Correctness: If $x \in L$ and w is a valid witness for x, then SKHash(sk, x) = PKHash(pk, x, w).
- Smoothness: For any $x \notin L$, the following distributions are identical:

 $\{(\mathsf{pk}, y) : (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda}), y \leftarrow \mathsf{SKHash}(\mathsf{sk}, x)\}$ $\{(\mathsf{pk}, y) : (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda}), y \xleftarrow{\$} \mathcal{Y}\}$

1.1 HPS for DDH tuples

We will present an HPS for the language of DDH tuples.

Let \mathbb{G} be a cyclic group of order p, where p is a large prime. Let g, h be two generators of \mathbb{G} . Let the DDH language L be the following:

$$L = \{ (g^w, h^w) \in \mathbb{G}^2 : w \in \mathbb{Z}_p \}$$

1

Let $\mathcal{X} = \mathbb{G}^2$, let $x = (a, b) \in \mathcal{X}$, and let $\mathcal{Y} = \mathbb{G}$. For any tuple $x = (g^w, h^w) \in L$, let w serve as the witness. Then we can construct a hash proof system for L as follows:

Definition 1.2 (HPS For The DDH Language L)

- Gen (1^{λ}) : Sample sk = $(r, s) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$. Let pk = $g^r \cdot h^s$. Then output (pk, sk).
- SKHash(sk, x): Output $y = a^r \cdot b^s$.
- PKHash(pk, x, w): Output $y = pk^w$.

¹Note that the DDH problem asks an adversary to distinguish (g, h, g^w, h^w) from (g, h, g^w, h^v) , for $h \stackrel{\$}{\leftarrow} \mathbb{G}$ and $(w, v) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$, so the ability to decide whether a given tuple belongs to L is sufficient to solve DDH. **Question 1:** Prove that the HPS constructed above satisfies correctness and smoothness.

Solution The solution is based on [ABP14].

Theorem 1.3 The HPS for L given in definition 1.2 satisfies correctness.

Proof. To prove correctness, it suffices to show that for any sk = (r, s) and any x = (a, b) and w for which $a = g^w$ and $b = h^w$,

$$\mathsf{SKHash}(\mathsf{sk}, x) = \mathsf{PKHash}(\mathsf{pk}, x, w)$$

That is shown as follows:

$$\begin{aligned} \mathsf{SKHash}(\mathsf{sk}, x) &= a^r \cdot b^s \\ &= (g^w)^r \cdot (h^w)^s \\ &= (g^r \cdot h^s)^w \\ &= \mathsf{pk}^w \\ &= \mathsf{PKHash}(\mathsf{pk}, x, w) \end{aligned}$$

Theorem 1.4 The HPS for L given in definition 1.2 satisfies smoothness.

Proof. It will help to focus on the discrete log of each group element, because then we can treat these computations as linear functions. Let $\tilde{h}, \tilde{a}, \tilde{b} \in \mathbb{Z}_p$ be defined such that $h = g^{\tilde{h}}$, $a = g^{\tilde{a}}$, and $b = g^{\tilde{b}}$.

Next,

$$\begin{split} & \text{let } \tilde{\mathbf{x}} = [\tilde{a}, \tilde{b}]^T \\ & \mathbf{v} = [1, \tilde{h}]^T \\ & \mathbf{M} = \begin{bmatrix} \mathbf{v} & \tilde{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 1 & \tilde{a} \\ \tilde{h} & \tilde{b} \end{bmatrix} \\ & \text{sk} = [r, s]^T \end{split}$$

Then
$$\mathsf{pk} = g^{r+s\cdot\tilde{h}} = g^{\mathsf{sk}^T\cdot\mathbf{v}} = g^{(\mathsf{sk}^T\cdot\mathbf{M})_1}$$

SKHash $(\mathsf{sk}, x) = g^{r\cdot\tilde{a}+s\cdot\tilde{b}} = g^{\mathsf{sk}^T\cdot\tilde{\mathbf{x}}} = g^{(\mathsf{sk}^T\cdot\mathbf{M})_2}$

To prove smoothness, it suffices to prove that if $x \notin L$, then for a uniformly random sk, sk^T · **v** and sk^T · $\tilde{\mathbf{x}}$ are uniformly random and independent.

If $x \notin L$, then $\tilde{b} \neq \tilde{h} \cdot \tilde{a}$. Then **v** and $\tilde{\mathbf{x}}$ are not parallel, so **M** is full-rank. This implies that for a uniformly random sk, the values of $\mathsf{sk}^T \cdot \mathbf{v}$ and $\mathsf{sk}^T \cdot \tilde{\mathbf{x}}$ are uniformly random and independent. As a result, pk and $\mathsf{SKHash}(\mathsf{sk}, x)$ will be uniformly random and independent as well.

1.2 HPS for the OR of two languages

Now we will construct a HPS for the OR of two DDH languages, with the help of a bilinear map.

Let \mathbb{G}_0 and \mathbb{G}_1 be cyclic groups of order p, where p is a large prime. Let (g_0, h_0) be generators of \mathbb{G}_0 , and let (g_1, h_1) be generators of \mathbb{G}_1 . Let us define the following languages:

$$L_0 = \{ (g_0^w, h_0^w) \in \mathbb{G}_0^2 : w \in \mathbb{Z}_p \}$$

$$L_1 = \{ (g_1^w, h_1^w) \in \mathbb{G}_1^2 : w \in \mathbb{Z}_p \}$$

$$L_{\vee} = \{ (a_0, b_0, a_1, b_1) \in \mathbb{G}_0^2 \times \mathbb{G}_1^2 : (a_0, b_0) \in L_0 \lor (a_1, b_1) \in L_1 \}$$

Let $x = (a_0, b_0, a_1, b_1)$, and let the witness for $x \in L_{\vee}$ be a value $w \in \mathbb{Z}_p$ such that either (1) $a_0 = g_0^w$ and $b_0 = h_0^w$ or (2) $a_1 = g_1^w$ and $b_1 = h_1^w$.

Furthermore, let $e : \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$ be an efficiently computable pairing function that satisfies:

$$e(g_0^r, g_1^s) = e(g_0, g_1)^{r \cdot s}$$

for any $r, s \in \mathbb{Z}_p$.

Now, we can construct a HPS for L_{\vee} .

Definition 1.5 (HPS For L_{\vee})

• Gen (1^{λ}) : Sample sk = $(r, s, t, u) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^4$. Compute

$$\mathsf{pk} = (\mathsf{pk}_0, \mathsf{pk}_1, \mathsf{pk}_2, \mathsf{pk}_3) = (g_0^r \cdot h_0^t, g_0^s \cdot h_0^u, g_1^r \cdot h_1^s, g_1^t \cdot h_1^u)$$

Finally, output (pk, sk).

• SKHash(sk, x): Given $x = (a_0, b_0, a_1, b_1)$, compute and output

$$y = e(a_0, a_1)^r \cdot e(a_0, b_1)^s \cdot e(b_0, a_1)^t \cdot e(b_0, b_1)^u$$

• PKHash(pk, x, w): If $a_0 = g_0^w$ and $b_0 = h_0^w$ ((a_0, b_0) $\in L_0$), then compute and output

$$y = e(\mathsf{pk}_0, a_1)^w \cdot e(\mathsf{pk}_1, b_1)^w$$

If $a_1 = g_1^w$ and $b_1 = h_1^w$ ((a_1, b_1) $\in L_1$), then compute and output

$$y = e(a_0, \mathsf{pk}_2)^w \cdot e(b_0, \mathsf{pk}_3)^u$$

Question 2: Prove that the HPS for L_{\vee} satisfies correctness and smoothness.

Solution

Claim 1.6 (Correctness) The HPS for L_{\vee} given in def. 1.5 satisfies correctness.

Proof. If $(a_0, b_0) \in L_0$, then SKHash(sk, x) = PKHash(pk, x, w). In this case, $a_0 = g_0^w$ and $b_0 = h_0^w$.

$$\begin{aligned} \mathsf{SKHash}(\mathsf{sk}, x) &= e(a_0, a_1)^r \cdot e(a_0, b_1)^s \cdot e(b_0, a_1)^t \cdot e(b_0, b_1)^u \\ &= e(g_0, a_1)^{w \cdot r} \cdot e(g_0, b_1)^{w \cdot s} \cdot e(h_0, a_1)^{w \cdot t} \cdot e(h_0, b_1)^{w \cdot u} \end{aligned}$$

$$\begin{split} \mathsf{PKHash}(\mathsf{pk}, x, w) &= e(\mathsf{pk}_0, a_1)^w \cdot e(\mathsf{pk}_1, b_1)^w \\ &= e(g_0^r \cdot h_0^t, a_1)^w \cdot e(g_0^s \cdot h_0^u, b_1)^w \\ &= e(g_0, a_1)^{w \cdot r} \cdot e(g_0, b_1)^{w \cdot s} \cdot e(h_0, a_1)^{w \cdot t} \cdot e(h_0, b_1)^{w \cdot u} \end{split}$$

 $\mathsf{SKHash}(\mathsf{sk}, x) = \mathsf{PKHash}(\mathsf{pk}, x, w)$

Next, if $(a_1, b_1) \in L_1$, then SKHash(sk, x) = PKHash(pk, x, w). In this case, $a_1 = g_1^w$ and $b_1 = h_1^w$.

$$\begin{aligned} \mathsf{SKHash}(\mathsf{sk}, x) &= e(a_0, a_1)^r \cdot e(a_0, b_1)^s \cdot e(b_0, a_1)^t \cdot e(b_0, b_1)^u \\ &= e(a_0, g_1)^{w \cdot r} \cdot e(a_0, h_1)^{w \cdot s} \cdot e(b_0, g_1)^{w \cdot t} \cdot e(b_0, h_1)^{w \cdot u} \end{aligned}$$

$$\begin{split} \mathsf{PKHash}(\mathsf{pk}, x, w) &= e(a_0, \mathsf{pk}_2)^w \cdot e(b_0, \mathsf{pk}_3)^w \\ &= e(a_0, g_1^r \cdot h_1^s)^w \cdot e(b_0, g_1^t \cdot h_1^u)^w \\ &= e(a_0, g_1)^{w \cdot r} \cdot e(a_0, h_1)^{w \cdot s} \cdot e(b_0, g_1)^{w \cdot t} \cdot e(b_0, h_1)^{w \cdot u} \end{split}$$

 $\mathsf{SKHash}(\mathsf{sk}, x) = \mathsf{PKHash}(\mathsf{pk}, x, w)$

Claim 1.7 (Smoothness) The HPS for L_{\vee} given in def. 1.5 satisfies smoothness.

Proof.

1. It helps to focus on the discrete log of each group element because then we can treat these computations as linear functions. Let $\tilde{h}_0, \tilde{h}_1, \tilde{a}_0, \tilde{a}_1, \tilde{b}_0, \tilde{b}_1 \in \mathbb{Z}_p$ be defined such that

$$egin{aligned} h_0 &= g_0^{ ilde{h}_0}, \quad h_1 &= g_1^{ ilde{h}_1} \ a_0 &= g_0^{ ilde{a}_0}, \quad a_1 &= g_1^{ ilde{a}_1} \ b_0 &= g_0^{ ilde{b}_0}, \quad b_1 &= g_1^{ ilde{b}_1} \end{aligned}$$

Then

$$\begin{aligned} \mathsf{pk}_0 &= g_0^{r+t\cdot h_0} \\ \mathsf{pk}_1 &= g_0^{s+u\cdot \tilde{h}_0} \\ \mathsf{pk}_2 &= g_1^{r+s\cdot \tilde{h}_1} \\ \mathsf{pk}_3 &= g_1^{t+u\cdot \tilde{h}_1} \end{aligned}$$

$$\mathsf{SKHash}(\mathsf{sk}, x) = g_T^{\tilde{a}_0 \cdot \tilde{a}_1 \cdot r + \tilde{a}_0 \cdot \tilde{b}_1 \cdot s + \tilde{b}_0 \cdot \tilde{a}_1 \cdot t + \tilde{b}_0 \cdot \tilde{b}_1 \cdot u}$$

where $g_T = e(g_0, g_1)$.

2. Let us define some vectors and matrices to represent the discrete log of the group elements above.

let
$$\mathbf{sk} = [r, s, t, u]^T$$

 $\tilde{\mathbf{pk}} = [r + t \cdot \tilde{h}_0, s + u \cdot \tilde{h}_0, r + s \cdot \tilde{h}_1, t + u \cdot \tilde{h}_1]^T$
 $\tilde{\mathbf{x}} = [\tilde{a}_0 \cdot \tilde{a}_1, \tilde{a}_0 \cdot \tilde{b}_1, \tilde{b}_0 \cdot \tilde{a}_1, \tilde{b}_0 \cdot \tilde{b}_1]^T$
 $\mathbf{M} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \tilde{h}_1 & 0 \\ \tilde{h}_0 & 0 & 0 & 1 \\ 0 & \tilde{h}_0 & 0 & \tilde{h}_1 \end{bmatrix}$

Then

$$\begin{aligned} \mathsf{SKHash}(\mathsf{sk}, x) &= g_T^{\mathsf{sk}^T \cdot \tilde{\mathbf{x}}} \\ \tilde{\mathsf{pk}}^T &= \mathsf{sk}^T \cdot \mathbf{M} \end{aligned}$$

Note that $\tilde{\mathsf{pk}}^T = \mathsf{sk}^T \cdot \mathbf{M}$ uniquely determines the value of pk , and $\mathsf{sk}^T \cdot \tilde{\mathbf{x}}$ uniquely determines the value of $\mathsf{SKHash}(\mathsf{sk}, x)$.

To prove smoothness, we just need to show that when $x \notin L_{\vee}$, then for a uniformly random sk, the values $\mathsf{sk}^T \cdot \mathbf{M}$ and $\mathsf{sk}^T \cdot \tilde{\mathbf{x}}$ are uniformly random and independent.

3. The following vector \mathbf{v} is perpendicular to the column-span of \mathbf{M} .

Let
$$\mathbf{v} = [\tilde{h}_0 \cdot \tilde{h}_1, -\tilde{h}_0, -\tilde{h}_1, 1]^T$$

Then $\mathbf{v}^T \cdot \mathbf{M} = [0, 0, 0, 0]$

4. $x \in L_{\vee}$ if and only if $\mathbf{v}^T \cdot \tilde{\mathbf{x}} = 0$.

$$\mathbf{v}^T \cdot \tilde{\mathbf{x}} = \tilde{a}_0 \cdot \tilde{a}_1 \cdot \tilde{h}_0 \cdot \tilde{h}_1 - \tilde{h}_0 \cdot \tilde{a}_0 \cdot \tilde{b}_1 - \tilde{h}_1 \cdot \tilde{b}_0 \cdot \tilde{a}_1 + \tilde{b}_0 \cdot \tilde{b}_1$$

$$= \tilde{a}_1 \cdot \tilde{h}_1 \cdot (\tilde{a}_0 \cdot \tilde{h}_0 - \tilde{b}_0) + \tilde{b}_1 \cdot (\tilde{b}_0 - \tilde{a}_0 \cdot \tilde{h}_0)$$

$$= (\tilde{b}_0 - \tilde{a}_0 \cdot \tilde{h}_0) \cdot (\tilde{b}_1 - \tilde{a}_1 \cdot \tilde{h}_1)$$

Next,

$$\begin{aligned} x \in L_{\vee} \iff (a_0, b_0) \in L_0 \lor (a_1, b_1) \in L_1 \\ \iff \tilde{b}_0 = \tilde{a}_0 \cdot \tilde{h}_0 \lor \tilde{b}_1 = \tilde{a}_1 \cdot \tilde{h}_1 \\ \iff (\tilde{b}_0 - \tilde{a}_0 \cdot \tilde{h}_0) \cdot (\tilde{b}_1 - \tilde{a}_1 \cdot \tilde{h}_1) = 0 \\ \iff \mathbf{v}^T \cdot \tilde{\mathbf{x}} = 0 \end{aligned}$$

5. If $x \notin L_{\vee}$, then $\tilde{\mathbf{x}}$ is not in the column-span of \mathbf{M} because $\mathbf{v}^T \cdot \tilde{\mathbf{x}} \neq 0$. Then for a uniformly random $\mathsf{sk} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^4$, the values of $\mathsf{sk}^T \cdot \mathbf{M}$ and $\mathsf{sk}^T \cdot \tilde{\mathbf{x}}$ are uniformly random and independent.

2 Identity-Based Encryption from LWE

We will construct identity-based encryption (IBE) and prove security from the decisional LWE assumption.

Parameters and Notation: Let *n* be the security parameter. Let $q \in [\frac{n^4}{2}, n^4]$ be a large prime modulus. Let $m = 20n \log n$, $\alpha = \frac{1}{m^4 \cdot \log^2 m}$, $L = m^{2.5}$, $s = m^{2.5} \cdot \log m$. Let χ be a Gaussian-weighted probability distribution over \mathbb{Z}_q with mean 0 and standard

Let χ be a Gaussian-weighted probability distribution over \mathbb{Z}_q with mean 0 and standard deviation $\frac{q \cdot \alpha}{\sqrt{2\pi}}$.

Let $H: \{0,1\}^* \to \mathbb{Z}_q^n$ be a random oracle.

Definition 2.1 (Decisional LWE Assumption) For any $m' \ge m$, the following two distributions are computationally indistinguishable:

$$\begin{split} \{(\mathbf{A}, \mathbf{u}) : \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m'}, \mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n, \mathbf{e} \stackrel{\$}{\leftarrow} \chi^{m'}, \mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e} \} \\ \{(\mathbf{A}, \mathbf{u}) : \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m'}, \mathbf{u} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m'} \} \end{split}$$

Helper Functions: Our construction will use the following helper functions:

- TrapdoorSample(1ⁿ) → A, T: Samples two matrices A ← Z_q^{n×m} and T ← Z_q^{m×m} such that A is statistically close to uniformly random, ker(A) = column-span(T), and every column of T is short: ||T · ê_i|| ≤ L for all i ∈ [m]. In other words, T is a short basis of ker(A).
- PreimageSample(A, T, v): Samples e such that A · e = v mod q from a distribution proportional to a discrete Gaussian with mean 0 and standard deviation s. In other words, e is a short vector in the preimage of v.

The following lemma will be useful.

Lemma 2.2 For $\mathbf{v} \in \mathbb{Z}_q^m$ sampled from a discrete Gaussian distribution with mean **0** and a sufficiently large standard deviation s, $\Pr[\|\mathbf{v}\| > s\sqrt{m}] \leq \operatorname{negl}(m)$.

Construction:

• Setup(1ⁿ): Sample

 $\mathbf{A}, \mathbf{T} \leftarrow \mathsf{TrapdoorSample}(1^n)$

Finally output mpk = A and msk = T.

• Gen(msk, ID): Compute $\mathbf{v} = H(ID)$. Then sample a short vector

 $\mathbf{e} \leftarrow \mathsf{PreimageSample}(\mathbf{A}, \mathbf{T}, \mathbf{v})$

Note that $\mathbf{A} \cdot \mathbf{e} = \mathbf{v} \mod q$. Finally, output $\mathsf{sk}_{ID} = \mathbf{e}$.

• Enc(mpk, ID, b): Let $b \in \{0, 1\}$. Sample $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$, $\mathbf{x} \leftarrow \chi^m$ and $x \leftarrow \chi$. Then compute $\mathbf{v} = H(ID)$, and

$$\mathbf{p} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{x}$$
$$c = \mathbf{v}^T \cdot \mathbf{s} + x + b \cdot |q/2|$$

Output $ct = (\mathbf{p}, c)$.

• $Dec(sk_{ID}, ct)$: Parse $sk_{ID} = e$ and ct = (p, c). Compute

$$\mu = c - \mathbf{e}^T \cdot \mathbf{p}$$

If $|\mu - q/2| \le q/4$, then output b' = 1. Otherwise, output b' = 0.

Question: Prove that the IBE construction given above is correct (except with negligible probability) and secure assuming decisional LWE (def. 2.1).

Solution This problem is based on the IBE construction from [GPV07].

Theorem 2.3 The IBE scheme is correct except with negligible probability.

Proof. For any $b \in \{0, 1\}$, let us compute $\mathsf{Dec}(\mathsf{sk}_{ID}, \mathsf{Enc}(\mathsf{mpk}, ID, b))$.

$$\begin{split} \boldsymbol{\mu} &= \boldsymbol{c} - \mathbf{e}^T \cdot \mathbf{p} \\ &= \mathbf{v}^T \cdot \mathbf{s} + x + \boldsymbol{b} \cdot \lfloor q/2 \rfloor - \mathbf{e}^T \cdot \mathbf{A}^T \cdot \mathbf{s} - \mathbf{e}^T \cdot \mathbf{x} \\ &= \mathbf{v}^T \cdot \mathbf{s} + x + \boldsymbol{b} \cdot \lfloor q/2 \rfloor - \mathbf{v}^T \cdot \mathbf{s} - \mathbf{e}^T \cdot \mathbf{x} \\ \boldsymbol{\mu} - \boldsymbol{b} \cdot \lfloor q/2 \rfloor &= x - \mathbf{e}^T \cdot \mathbf{x} \end{split}$$

With overwhelming probability, $\mathbf{e}^T \cdot \mathbf{x} \leq q/10$ and $x \leq q/10$ (lemma 2.4), in which case:

$$\left|\mu - b \cdot \lfloor q/2 \rfloor\right| \le \frac{q}{10} + \frac{q}{10} = \frac{q}{5}$$

Then when b = 1,

$$|\mu - q/2| = |\mu - b \cdot q/2| \le q/4$$

When $b = 0, \mu \leq q/5$, so

$$|\mu - q/2| = q/2 - \mu \ge q/2 - q/5 = .3q > q/4$$

So $Dec(sk_{ID}, Enc(mpk, ID, b))$ will output b.

Lemma 2.4 For sufficiently large n, with overwhelming probability, $\mathbf{e}^T \cdot \mathbf{x} \leq q/10$ and $x \leq q/10$.

Proof. First, $\mathbf{x} \leftarrow \chi^m$, where χ^m is a discrete Gaussian with standard deviation

$$s' = \frac{\sqrt{m} \cdot q \cdot \alpha}{\sqrt{2\pi}}$$
$$= \frac{\sqrt{m} \cdot q}{\sqrt{2\pi} \cdot m^4 \cdot \log^2 m} = \frac{q}{\sqrt{2\pi} \cdot m^{3.5} \cdot \log^2 m}$$

By lemma 2.2, with overwhelming probability,

$$\|\mathbf{x}\| \le s'\sqrt{m} = \frac{q}{\sqrt{2\pi} \cdot m^3 \cdot \log^2 m}$$

Next, **e** is sampled from a discrete Gaussian with standard deviation $s = m^{2.5} \cdot \log m$. Then by lemma 2.2, with overwhelming probability,

$$\|\mathbf{e}\| \le s\sqrt{m} = m^3 \cdot \log m$$

Then

$$\mathbf{e}^{T} \cdot \mathbf{x} \leq \|\mathbf{e}\| \cdot \|\mathbf{x}\|$$
$$\leq m^{3} \cdot \log m \cdot \frac{q}{\sqrt{2\pi} \cdot m^{3} \cdot \log^{2} m}$$
$$= \frac{q}{\sqrt{2\pi} \cdot \log m}$$

For sufficiently large n and m, $\frac{q}{\sqrt{2\pi} \cdot \log m} < \frac{q}{10}$.

Theorem 2.5 The IBE scheme is CPA-secure.

Proof.

The adversary's view: The adversary receives the public key mpk = A as well as $\mathbf{v} = H(ID^*)$ for the ID^* under which the challenge ciphertext is computed. Then for a random message $b \leftarrow \{0, 1\}$, the adversary receives $Enc(mpk, ID^*, b)$, which comprises:

$$\mathbf{p} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{x}$$
$$c = \mathbf{v}^T \cdot \mathbf{s} + x + b \cdot \lfloor q/2 \rfloor$$

We can express these values as follows.

Let
$$\mathbf{A}' = [A||\mathbf{v}]$$

 $\mathbf{u}' = (\mathbf{p}||(\mathbf{v}^T \cdot \mathbf{s} + x))$ expressed as a column vector
 $\mathbf{x}' = (\mathbf{x}||x)$ expressed as a column vector
 $\mathbf{b} = (0^m ||(b \cdot \lfloor q/2 \rfloor))$ expressed as a column vector

Then to phrase things differently, the adversary receives $(\mathbf{A}', \mathbf{u}' + \mathbf{b})$, where $\mathbf{A}' \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times (m+1)}$, $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n, \mathbf{x}' \stackrel{\$}{\leftarrow} \chi^{m+1}$, and

$$\mathbf{u}' = \mathbf{A}'^T \cdot \mathbf{s} + \mathbf{x}'$$

The decisional LWE assumption (def. 2.1) says that this distribution over $(\mathbf{A}', \mathbf{u}' + \mathbf{b})$ is computationally indistinguishable from

$$\{(\mathbf{A}',\mathbf{u}'+\mathbf{b}):\mathbf{A}' \xleftarrow{\$} \mathbb{Z}_q^{n \times (m+1)}, \mathbf{u}' \xleftarrow{\$} \mathbb{Z}_q^{m+1}\}$$

Finally, the adversary can also query on any² ID to learn vectors $(\mathbf{v}_{ID}, \mathbf{e}_{ID})$ for which $\mathbf{v} = H(ID)$ and $\mathbf{v} = \mathbf{A} \cdot \mathbf{e} \mod q$. However, these queries can be simulated by sampling a random \mathbf{e} for each ID, then computing $\mathbf{v} = \mathbf{A} \cdot \mathbf{e} \mod q$, and programming the random oracle so that $H(ID) = \mathbf{v}$.

Reduction: Given an adversary \mathcal{A}_{IBE} that breaks the CPA security of the IBE scheme, we can construct and adversary \mathcal{A}_{LWE} that breaks the decisional LWE assumption.

Construction of \mathcal{A}_{LWE} :

- 1. \mathcal{A}_{LWE} receives $(\mathbf{A}', \mathbf{u}')$, where either
 - (a) $\mathbf{A}' \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times (m+1)}, \mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n, \mathbf{x}' \stackrel{\$}{\leftarrow} \chi^{m+1}, \text{ and } \mathbf{u}' = \mathbf{A}'^T \cdot \mathbf{s} + \mathbf{x}'$ (b) Or $\mathbf{A}' \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times (m+1)}, \mathbf{u}' \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m+1}$
- 2. \mathcal{A}_{LWE} sets mpk to be the first *m* columns of \mathbf{A}' and \mathbf{v}^* to be the final column of \mathbf{A}' . \mathcal{A}_{LWE} samples $b \stackrel{\$}{\leftarrow} \{0,1\}$ and sets $\mathbf{b} = (0^m || (b \cdot \lfloor q/2 \rfloor))$. Then \mathcal{A}_{LWE} computes $\mathsf{ct} = \mathbf{u}' + \mathbf{b}$.
- 3. \mathcal{A}_{LWE} runs \mathcal{A}_{IBE} internally and simulates the CPA security game. \mathcal{A}_{IBE} receives mpk. Then when \mathcal{A}_{IBE} chooses the identity of the encryptor ID^* for the challenge ciphertext, \mathcal{A}_{IBE} receives the challenge ciphertext ct.
- 4. Whenever \mathcal{A}_{IBE} asks for sk_{ID} or H(ID) for a given ID, \mathcal{A}_{LWE} handles these queries as follows:
 - (a) If \mathcal{A}_{IBE} has previously asked for sk_{ID} or H(ID) for this particular ID, then \mathcal{A}_{LWE} looks up the value of sk_{ID} or H(ID) that was computed previously and returns it to \mathcal{A}_{IBE} .
 - (b) Else if the queried ID is not ID^* , the challenge ID, then \mathcal{A}_{LWE} samples $\mathbf{e} \in \mathbb{Z}_q^m$ from a discrete Gaussian with mean **0** and standard deviation s and sets $\mathsf{sk}_{ID} = \mathbf{e}$. Then \mathcal{A}_{LWE} computes $\mathbf{v} = \mathbf{A} \cdot \mathbf{e} \mod q$ and programs $H(ID) = \mathbf{v}$. Finally, \mathcal{A}_{LWE} returns either sk_{ID} or H(ID), depending on which value \mathcal{A}_{IBE} requested.
 - (c) Else if the queried ID is ID^* , and $H(ID^*)$ is requested, then \mathcal{A}_{LWE} samples $\mathbf{v} \stackrel{\$}{\leftarrow} \mathbb{Z}_a^n$ and returns $H(ID^*) = \mathbf{v}$.
- 5. Eventually, \mathcal{A}_{IBE} outputs a guess b' for b. \mathcal{A}_{LWE} checks whether b' = b. If so, \mathcal{A}_{LWE} outputs 0. If not, \mathcal{A}_{LWE} outputs 1.

²The only exception is that the adversary cannot ask for sk_{ID^*} .

Analysis: First, note that \mathcal{A}_{LWE} correctly simulates the adversary's queries. For each ID that \mathcal{A}_{IBE} queries, H(ID) is a uniformly random vector \mathbf{v} . And conditioned on the value of \mathbf{v} , \mathbf{sk}_{ID} is a vector \mathbf{e} that comes from a Gaussian-weighted distribution with mean $\mathbf{0}$ and standard deviation s such that $\mathbf{v} = \mathbf{A} \cdot \mathbf{e} \mod q$.

Next, if \mathcal{A}_{LWE} was given a sample from the distribution

$$\{(\mathbf{A}',\mathbf{u}'):\mathbf{A}' \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n\times(m+1)}, \mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n, \mathbf{x}' \stackrel{\$}{\leftarrow} \chi^{m+1}, \mathbf{u}' = \mathbf{A}'^T \cdot \mathbf{s} + \mathbf{x}'\}$$

then \mathcal{A}_{LWE} has correctly simulated the CPA security game for the IBE scheme, and \mathcal{A}_{IBE} guesses b' = b with non-negligible advantage. In this case, \mathcal{A}_{LWE} will output 0 with probability $\frac{1}{2} + \mathsf{non-negl}(n)$.

On the other hand, if \mathcal{A}_{LWE} was given a sample from

$$\{(\mathbf{A}',\mathbf{u}'):\mathbf{A}' \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times (m+1)}, \mathbf{u}' \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m+1}\}$$

Then \mathcal{A}_{IBE} has no information about b. This is because \mathcal{A}_{IBE} receives $\mathbf{u}' + \mathbf{b}$, in which \mathbf{b} is masked by a uniformly random \mathbf{u}' . Then \mathcal{A}_{IBE} guesses b' = b with 0 advantage, and \mathcal{A}_{LWE} will output 0 with probability $\frac{1}{2}$.

In summary, \mathcal{A}_{LWE} will distinguish the two distributions with non-negligible advantage, which breaks the decisional LWE assumption. Since decisional LWE is assumed to be true, then there exists no PPT adversary \mathcal{A}_{IBE} that breaks the CPA security of the IBE scheme.

References

- [ABP14] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for hash proof systems: New constructions and applications. Cryptology ePrint Archive, Paper 2014/483, 2014.
- [GPV07] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. Cryptology ePrint Archive, Paper 2007/432, 2007.