CS 276: Homework 5

Due Date: Friday October 18th, 2024 at 8:59pm via Gradescope

1 Signature Scheme from CDH

We will construct a signature scheme that resembles the Schnorr signature scheme and prove it secure given the CDH assumption.

Let \mathbb{G} be a cryptographic group of prime order p that is generated by g. Also, let p be super-polynomial in the security parameter λ . Let us also define two random oracles $H: \mathbb{G} \to \mathbb{G}$ and $G: \mathcal{M} \times \mathbb{G}^6 \to \mathbb{Z}_p$, where \mathcal{M} is the message space.

- 1. Gen (1^{λ}) : Sample $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and compute $y = g^x$. Output $\mathsf{pk} = y$ and $\mathsf{sk} = x$.
- 2. Sign(sk, m): To sign a message $m \in \mathcal{M}$, sample $k \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and compute the following:

$$\begin{split} u &= g^k \\ h &= H(u) \\ z &= h^{\mathsf{sk}} \\ v &= h^k \\ c &= G(m,g,h,\mathsf{pk},z,u,v) \\ s &= k + c \cdot \mathsf{sk} \mod p \\ \sigma &= (z,s,c) \end{split}$$

Output σ .

3. Verify(pk, m, σ): Compute the following:

$$u' = g^{s} \cdot \mathsf{pk}^{-c}$$

$$h' = H(u')$$

$$v' = h'^{s} \cdot z^{-c}$$

$$c' = G(m, g, h', \mathsf{pk}, z, u', v')$$

Output 1 (accept) if c = c' and 0 (reject) otherwise.

Definition 1.1 (Computational Diffie-Hellman (CDH) Assumption) The CDH challenger samples $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ independently and gives the adversary (g, g^a, g^b) . The adversary wins the CDH game if they return $g^{a\cdot b}$. The CDH assumption states that for any PPT adversary, the probability that the adversary wins the CDH game is $\operatorname{negl}(\lambda)$.

Question: Prove that the signature scheme constructed above is secure in the random oracle model given the CDH assumption.

2 Additively Homomorphic Encryption (AHE)

Some natural encryption schemes, such as El Gamal encryption, are additively homomorphic¹, meaning that $\text{Enc}(m^{(1)})$ and $\text{Enc}(m^{(2)})$ can be combined into a valid encryption of $m^{(1)} + m^{(2)}$ without knowledge of the secret key. It turns out that this property is sufficient to construct public-key encryption. We will show that secret-key additively homomorphic encryption implies public-key encryption.

Definition 2.1 (Additively Homomorphic Encryption) Let (Gen, Enc, Dec, H_{\oplus}) be four PPT algorithms with message space $\mathcal{M} = \{0, 1\}$ and ciphertext space \mathcal{C} . Let H_{\oplus} map $\mathcal{C}^{\ell} \to \mathcal{C}$, for any $\ell = \mathsf{poly}(\lambda)$.

Next, (Gen, Enc, Dec, H_{\oplus}) is a secret-key additively homomorphic encryption (AHE) scheme² if the following properties are satisfied:

- Perfect Correctness: For any $\ell = \text{poly}(\lambda)$ messages $(m^{(1)}, \dots, m^{(\ell)}) \in \{0, 1\}^{\ell}$: $\Pr\left[\mathsf{Dec}\left(\mathsf{sk}, H_{\oplus}\left[\mathsf{Enc}(\mathsf{sk}, m^{(1)}), \dots, \mathsf{Enc}(\mathsf{sk}, m^{(\ell)})\right]\right) = \sum_{i \in [\ell]} m^{(i)} \mod 2\right] = 1$
- Compactness: There exists a polynomial function m(·) such that for any ℓ = poly(λ) messages (m⁽¹⁾,...,m^(ℓ)) ∈ {0,1}^ℓ, the length of H_⊕[Enc(sk,m⁽¹⁾),...,Enc(sk,m^(ℓ))] is upper-bounded by m(λ).³
- CPA security: (Gen, Enc, Dec) constitute a CPA secure encryption scheme.

The following construction builds a public-key encryption scheme (Gen', Enc', Dec') from a secret-key AHE scheme (Gen, Enc, Dec, H_{\oplus}).

1. $\operatorname{Gen}'(1^{\lambda})$: Compute the following:

$$\begin{split} \mathsf{sk} &\leftarrow \mathsf{Gen}(1^{\lambda}) \\ \ell' &= 4m(\lambda) \\ r \xleftarrow{\$} \{0,1\}^{\ell'} \setminus \{0^{\ell'}\} \\ X_i &\leftarrow \mathsf{Enc}(\mathsf{sk},r_i), \quad \forall i \in [\ell'] \\ \mathsf{pk} &= (X_1, \dots, X_{\ell'}, r) \end{split}$$

Then output (pk, sk).

- 2. Enc'(pk, m):
 - (a) Sample $s \in \{0, 1\}^{\ell'}$ uniformly at random such that $\langle r, s \rangle = m.^4$
 - (b) Let X_s be a tuple of all the X_i -values for which $s_i = 1$.
 - (c) Compute and output $c = H_{\oplus}(X_s)$.

3. Dec'(sk, c): Output Dec(sk, c).

³Note that $m(\lambda)$ is independent of ℓ .

 ${}^{4}\langle r,s\rangle = \sum_{i\in [\ell']} r_i \cdot s_i \mod 2$. We can sample s using rejection sampling: sample $s \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'}$ and check whether $\langle r,s\rangle = m$. If not, then reject this s and repeat the procedure.

¹This is assuming we use the additive notation for operations over the cryptographic group.

²*Public-key* additively homomorphic encryption is defined similarly, except (Gen, Enc, Dec) are a public-key encryption scheme, H_{\oplus} takes pk as input, and Enc takes pk, instead of sk, as input.

Question: Prove that if (Gen, Enc, Dec, H_{\oplus}) is a secret-key AHE scheme, then (Gen', Enc', Dec') satisfies (1) CPA security and (2) the following notion of perfect correctness:

 $\Pr\left[\mathsf{Dec}'(\mathsf{sk},\mathsf{Enc}'(\mathsf{pk},m))=m\right]=1,\quad\forall m\in\{0,1\}$