CS 276: Homework 5

Due Date: Friday October 18th, 2024 at 8:59pm via Gradescope

1 Signature Scheme from CDH

We will construct a signature scheme that resembles the Schnorr signature scheme and prove it secure given the CDH assumption.

Let \mathbb{G} be a cryptographic group of prime order p that is generated by g. Also, let p be super-polynomial in the security parameter λ . Let us also define two random oracles $H: \mathbb{G} \to \mathbb{G}$ and $G: \mathcal{M} \times \mathbb{G}^6 \to \mathbb{Z}_p$, where M is the message space.

- 1. Gen(1^{λ}): Sample $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and compute $y = g^x$. Output $pk = y$ and $sk = x$.
- 2. Sign(sk, m): To sign a message $m \in \mathcal{M}$, sample $k \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and compute the following:

$$
u = g^{k}
$$

\n
$$
h = H(u)
$$

\n
$$
z = h^{\text{sk}}
$$

\n
$$
v = h^{k}
$$

\n
$$
c = G(m, g, h, \text{pk}, z, u, v)
$$

\n
$$
s = k + c \cdot \text{sk} \mod p
$$

\n
$$
\sigma = (z, s, c)
$$

Output σ .

3. Verify(pk, m, σ): Compute the following:

$$
u' = gs \cdot \mathsf{pk}^{-c}
$$

\n
$$
h' = H(u')
$$

\n
$$
v' = h'^s \cdot z^{-c}
$$

\n
$$
c' = G(m, g, h', \mathsf{pk}, z, u', v')
$$

Output 1 (accept) if $c = c'$ and 0 (reject) otherwise.

Definition 1.1 (Computational Diffie-Hellman (CDH) Assumption) The CDH challenger samples $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ independently and gives the adversary (g, g^a, g^b) . The adversary wins the CDH game if they return $g^{a \cdot b}$. The CDH assumption states that for any PPT adversary, the probability that the adversary wins the CDH game is $\text{negl}(\lambda)$.

Question: Prove that the signature scheme constructed above is secure in the random oracle model given the CDH assumption.

2 Additively Homomorphic Encryption (AHE)

Some natural encryption schemes, such as El Gamal encryption, are additively homomor-phic^{[1](#page-1-0)}, meaning that $Enc(m^{(1)})$ and $Enc(m^{(2)})$ can be combined into a valid encryption of $m^{(1)} + m^{(2)}$ without knowledge of the secret key. It turns out that this property is sufficient to construct public-key encryption. We will show that secret-key additively homomorphic encryption implies public-key encryption.

Definition 2.1 (Additively Homomorphic Encryption) Let (Gen, Enc, Dec, H_{\oplus}) be four PPT algorithms with message space $\mathcal{M} = \{0, 1\}$ and ciphertext space C. Let H_{\oplus} map $\mathcal{C}^{\ell} \to \mathcal{C}$, for any $\ell = \text{poly}(\lambda)$.

Next, (Gen, Enc, Dec, H_{\oplus}) is a secret-key additively homomorphic encryption (AHE) $scheme²$ $scheme²$ $scheme²$ if the following properties are satisfied:

- Perfect Correctness: For any $\ell = \text{poly}(\lambda)$ messages $(m^{(1)}, \ldots, m^{(\ell)}) \in \{0, 1\}^{\ell}$. $\Pr\left[\mathsf{Dec}\!\left(\mathsf{sk}, H_\oplus\big[\mathsf{Enc}(\mathsf{sk}, m^{(1)}), \ldots, \mathsf{Enc}(\mathsf{sk}, m^{(\ell)})\big]\right) = \sum_{i=1}^{\ell} \mathsf{Dec}\!\left(\mathsf{sk}, H_\oplus\big[\mathsf{Enc}(\mathsf{sk}, m^{(1)}), \ldots, \mathsf{Enc}(\mathsf{sk}, m^{(\ell)})\big]\right) = \sum_{i=1}^{\ell} \mathsf{Dec}\!\left(\mathsf{sk}, H_\oplus\big[\mathsf{Enc}(\mathsf{sk}, m^{(1)}), \ldots, \mathsf{Enc}(\mathsf{sk}, m^{(\ell)})\big]\right)$ $i \in [\ell]$ $m^{(i)} \mod 2 = 1$
- Compactness: There exists a polynomial function $m(\cdot)$ such that for any $\ell = \text{poly}(\lambda)$ $\textit{messages } (m^{(1)}, \ldots, m^{(\ell)}) \in \{0,1\}^{\ell}, \textit{ the length of } H_{\oplus} \big[\textsf{Enc}(\textsf{sk}, m^{(1)}), \ldots, \textsf{Enc}(\textsf{sk}, m^{(\ell)}) \big]$ is upper-bounded by $m(\lambda)$.^{[3](#page-1-2)}
- CPA security: (Gen, Enc, Dec) constitute a CPA secure encryption scheme.

The following construction builds a public-key encryption scheme (Gen', Enc', Dec') from a secret-key AHE scheme (Gen, Enc, Dec, H_{\oplus}).

1. Gen'(1^{λ}): Compute the following:

$$
sk \leftarrow Gen(1^{\lambda})
$$

\n
$$
\ell' = 4m(\lambda)
$$

\n
$$
r \stackrel{\$}{\leftarrow} \{0, 1\}^{\ell'} \setminus \{0^{\ell'}\}
$$

\n
$$
X_i \leftarrow Enc(\text{sk}, r_i), \quad \forall i \in [\ell']
$$

\n
$$
\mathsf{pk} = (X_1, \dots, X_{\ell'}, r)
$$

]

Then output (pk,sk).

- 2. $Enc'(pk, m)$:
	- (a) Sample $s \in \{0,1\}^{\ell'}$ uniformly at random such that $\langle r, s \rangle = m^{4}$ $\langle r, s \rangle = m^{4}$ $\langle r, s \rangle = m^{4}$.
	- (b) Let X_s be a tuple of all the X_i -values for which $s_i = 1$.
	- (c) Compute and output $c = H_{\oplus}(X_s)$.

3. Dec'(sk, c): Output Dec(sk, c).

³Note that $m(\lambda)$ is independent of ℓ .

¹This is assuming we use the additive notation for operations over the cryptographic group.

 $^{2}Public-key$ additively homomorphic encryption is defined similarly, except (Gen, Enc, Dec) are a public-key encryption scheme, H_{\oplus} takes pk as input, and Enc takes pk, instead of sk, as input.

 $\langle f, s \rangle = \sum_{i \in [\ell']} r_i \cdot s_i \mod 2$. We can sample s using rejection sampling: sample $s \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'}$ and check whether $\langle r, s \rangle = m$. If not, then reject this s and repeat the procedure.

Question: Prove that if $(\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec}, H_{\oplus})$ is a secret-key AHE scheme, then $(\mathsf{Gen}', \mathsf{Enc}', \mathsf{Dec}')$ satisfies (1) CPA security and (2) the following notion of perfect correctness:

 $Pr\left[Dec^{\prime}(\mathsf{sk}, Enc^{\prime}(\mathsf{pk}, m)) = m\right] = 1, \quad \forall m \in \{0, 1\}$