CS 276: Homework 5

Due Date: Friday October 18th, 2024 at 8:59pm via Gradescope

1 Signature Scheme from CDH

We will construct a signature scheme that resembles the Schnorr signature scheme and prove it secure given the CDH assumption.

Let \mathbb{G} be a cryptographic group of prime order p that is generated by g. Also, let p be super-polynomial in the security parameter λ . Let us also define two random oracles $H: \mathbb{G} \to \mathbb{G}$ and $G: \mathcal{M} \times \mathbb{G}^6 \to \mathbb{Z}_p$, where M is the message space.

- 1. Gen(1^{λ}): Sample $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and compute $y = g^x$. Output $pk = y$ and $sk = x$.
- 2. Sign(sk, m): To sign a message $m \in \mathcal{M}$, sample $k \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and compute the following:

$$
u = g^{k}
$$

\n
$$
h = H(u)
$$

\n
$$
z = h^{\text{sk}}
$$

\n
$$
v = h^{k}
$$

\n
$$
c = G(m, g, h, \text{pk}, z, u, v)
$$

\n
$$
s = k + c \cdot \text{sk} \mod p
$$

\n
$$
\sigma = (z, s, c)
$$

Output σ .

3. Verify(pk, m, σ): Compute the following:

$$
u' = gs \cdot \mathsf{pk}^{-c}
$$

\n
$$
h' = H(u')
$$

\n
$$
v' = h'^s \cdot z^{-c}
$$

\n
$$
c' = G(m, g, h', \mathsf{pk}, z, u', v')
$$

Output 1 (accept) if $c = c'$ and 0 (reject) otherwise.

Definition 1.1 (Computational Diffie-Hellman (CDH) Assumption) The CDH challenger samples $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ independently and gives the adversary (g, g^a, g^b) . The adversary wins the CDH game if they return $g^{a\cdot b}$. The CDH assumption states that for any PPT adversary, the probability that the adversary wins the CDH game is $\mathsf{negl}(\lambda)$.

Question: Prove that the signature scheme constructed above is secure in the random oracle model given the CDH assumption.

Solution The solution is based on [\[CM05\]](#page-10-0), section 4.

Given an adversary A_{Sign} that breaks the security of the signature scheme, we construct the following CDH adversary \mathcal{A}_{CDH} that breaks breaks the CDH assumption. Construction of \mathcal{A}_{CDH} :

- 1. \mathcal{A}_{CDH} receives (g, g^a, g^b) . Then \mathcal{A}_{CDH} initializes the signing adversary \mathcal{A}_{Sign} with security parameter 1^{λ} and $pk = g^{\alpha}$. That means implicitly, $sk = a$.
- 2. Simulated Random Oracle: A_{CDH} keeps a truth table H for H and a truth table G for G , which works similarly.

Initially, $\mathcal{H} = \{\}$, but H can be reprogrammed. If $(u, h) \in \mathcal{H}$, then $H(u) = h$. On the other hand, if for a given input u, there is no h such that $(u, h) \in \mathcal{H}$, then $H(u) = \perp$. Finally, each input $u \in \mathbb{G}$ can have at most one output, so there is at most one h-value such that $(u, h) \in \mathcal{H}$.

- 3. \mathcal{A}_{CDH} runs \mathcal{A}_{Sian} internally, and handles queries to H, G , Sign(sk, ·) as follows.
	- $H(u)$: On input $u \in \mathbb{G}$:
		- (a) If $H(u) = \perp$, then sample $d \stackrel{\$}{\leftarrow} \mathbb{Z}_p$, and append $(u, g^b \cdot g^d)$ to $\mathcal H$ so that now, $H(u) = g^b \cdot g^d$.
		- (b) Return $H(u)$.
	- $G(m, q, h, \mathsf{pk}, z, u, v)$: On input $(m, q, h, \mathsf{pk}, z, u, v)$:
		- (a) If $G(m, g, h, \mathsf{pk}, z, u, v) = \bot$, then sample $d \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and append $((m, g, h, \mathsf{pk}, z, u, v), d)$ to $\mathcal G$ so that $G(m, q, h, \mathsf{pk}, z, u, v) = d$.
		- (b) Return $G(m, g, h, \mathsf{pk}, z, u, v)$.
	- Sign(sk, m): On input $m \in \mathcal{M}$, do the following:
		- (a) Sample $(\kappa, c, s) \overset{\$}{\leftarrow} \mathbb{Z}_p^3$.
		- (b) Compute

$$
u = gs \cdot \mathsf{pk}^{-c}
$$

$$
h = g\kappa
$$

$$
z = \mathsf{pk}^{\kappa}
$$

$$
v = hs \cdot z^{-c}
$$

$$
\sigma = (z, s, c)
$$

- (c) If $H(u) \neq \perp$, then \mathcal{A}_{CDH} outputs \perp and aborts. Otherwise, it appends (u, h) to H. Likewise, if $G(m, g, h, \mathsf{pk}, z, u, v) \neq \bot$, then \mathcal{A}_{CDH} outputs \bot and aborts. Otherwise, it appends $((m, g, h, \mathsf{pk}, z, u, v), c)$ to \mathcal{G} .
- (d) Return σ .
- 4. When \mathcal{A}_{Sign} outputs an attempted forgery $(m^*, (z^*, s^*, c^*)), \mathcal{A}_{CDH}$ checks that

$$
Verify(\mathsf{pk}, m^*, (z^*, s^*, c^*)) = 1
$$

and that $(m^*, (z^*, s^*, c^*))$ were not previously generated on a query to Sign. If at least one check fails, then \mathcal{A}_{CDH} outputs \perp and aborts. Otherwise, if both checks pass, then \mathcal{A}_{CDH} computes:

$$
u^*:=g^{s^*}\cdot \mathsf{pk}^{-c^*}
$$

and continues.

- 5. We can assume that $H(u^*) \neq \perp$ because Verify(pk, $m^*, (z^*, s^*, c^*)$) = 1.
	- (a) Case 1: If the value of $H(u^*)$ was determined during one of \mathcal{A}_{Sign} 's queries to H, then \mathcal{A}_{CDH} looks up the value of d such that $H(u^*) = g^b \cdot g^d$. Then \mathcal{A}_{CDH} computes and outputs:

$$
z^*\cdot (g^a)^{-d}
$$

as its guess for $g^{a \cdot b}$.

(b) Case 2: If the value of $H(u^*)$ was determined during one of \mathcal{A}_{Sign} 's queries to $Sign(sk, \cdot)$, then \mathcal{A}_{CDH} looks up the values of (m', c', s') from that query. Note that $u^* = g^{s'} \cdot \mathsf{pk}^{-c'}$. Then \mathcal{A}_{CDH} computes and outputs:

$$
(g^b)^{(s^*-s')/(c^*-c')}
$$

as its guess for $g^{a \cdot b}$.

Analysis \mathcal{A}_{CDH} correctly simulates the signature security game for \mathcal{A}_{Sign} . Assuming that \mathcal{A}_{CDH} does not abort during the simulation of Sign(sk, m), \mathcal{A}_{CDH} correctly simulates the oracles for H, G , Sign(sk, ·) (lemma [1.3\)](#page-3-0). Furthermore, the probability that \mathcal{A}_{CDH} aborts during the simulation of $Sign(\mathsf{sk}, m)$ is negligible (lemma [1.2\)](#page-2-0).

Next, \mathcal{A}_{Sign} will output a valid forgery with non-negligible probability. This means that

Verify
$$
(pk, m^*, (z^*, s^*, c^*)) = 1
$$

and m^* was not previously queried to Sign. Then \mathcal{A}_{CDH} will reach either case 1 or 2.

Next, if \mathcal{A}_{CDH} reaches cases 1 or 2, then \mathcal{A}_{CDH} will compute the correct output with overwhelming probability. If \mathcal{A}_{CDH} reaches case 1, then

$$
g^{a \cdot b} = z^* \cdot (g^a)^{-d}
$$

with overwhelming probability (lemma [1.4\)](#page-4-0). If \mathcal{A}_{CDH} reaches case 2, then

$$
g^{a \cdot b} = (g^b)^{(s^* - s')/(c^* - c')}
$$

with overwhelming probability (lemma [1.7\)](#page-5-0).

Lemmas

Lemma 1.2 The probability that A_{CDH} outputs \perp and aborts during the simulation of $Sign(\textsf{sk}, m)$ is negl(λ).

Proof. \mathcal{A}_{CDH} outputs \perp and aborts during the simulation of $Sign(\mathsf{sk}, m)$ if $H(u)$ or $G(m, q, h, \mathsf{pk}, z, u, v)$ already have a value determined from previous steps.

 u is uniformly random and independent of all variables in previous rounds. This is because

$$
u = g^s \cdot \mathsf{pk}^{-c}
$$

where s is uniformly random in \mathbb{Z}_p and independent of all previously computed variables.

At any point in the simulation, H contains $\text{poly}(\lambda)$ -many input-output pairs. The probability that $(u,*) \in \mathcal{H}$ is $\mathsf{poly}(\lambda)/|\mathbb{G}| = \mathsf{negl}(\lambda)$. Then in the simulation of $\mathsf{Sign}(\mathsf{sk}, m)$, the probability that $H(u) \neq \perp$ is negl(λ).

Likewise for $G(m, g, h, \mathsf{pk}, z, u, v)$: there are $|\mathbb{G}|$ possible values that u can take and all are equally likely, over the randomness of s. $\mathcal G$ contains $\text{poly}(\lambda)$ -many input-output pairs. The probability that $((m, g, h, \mathsf{pk}, z, u, v), *) \in \mathcal{G}$ is $\mathsf{poly}(\lambda)/|\mathbb{G}| = \mathsf{negl}(\lambda)$. Then in the simulation of Sign(sk, m), the probability that $G(m, g, h, \mathsf{pk}, z, u, v) \neq \bot$ is negl(λ).

Lemma 1.3 Given that A_{CDH} does not abort during the simulation of Sign(sk, m), A_{CDH} correctly simulates the oracles for H, G , $Sign(s, \cdot)$.

Proof. First, $(g, \mathsf{pk}, \mathsf{sk})$ have the correct distribution. $\mathsf{sk} = a$, which is uniformly random in \mathbb{Z}_p , and $pk = g^{sk}$.

Second, H is simulated correctly because each query to H receives a uniformly random response that is independent of the output of H on any other input. When A_{Sign} queries H, they receive the response $g^b \cdot g^d$, which is uniformly random due to the randomness of d. In the simulation of $Sign(\mathsf{sk}, m)$, the value of $H(u)$ is reprogrammed to $h = g^{\kappa}$, which is uniformly random due to the randomness of κ .

Third, G is simulated correctly because each query to G receives a uniformly random response that is independent of the output of G on any other input. When \mathcal{A}_{Sian} queries G, they receive the response d, which is uniformly random. In the simulation of $Sign(s, m)$, the value of $G(m, q, h, \mathsf{pk}, z, u, v)$ is reprogrammed to c which is uniformly random.

Fourth, the variables

 (u, h, z, v, c, s)

have the same distribution in the simulation of $Sign(\mathsf{sk}, m)$ as they do in the real signature game. In the real signature game:

- c is uniformly random because it is the output of $G(m, q, h, \mathsf{pk}, z, u, v)$, and with overwhelming probability, G has not previously been queried on $(m, q, h, \mathsf{pk}, z, u, v)$.
- s is uniformly random due to the randomness of k. Recall that $s = k + c \cdot sk \mod p$.
- h is uniformly random because it is the output of $H(u)$, and with overwhelming probability, H has not previously been queried on u .
- Given $(c, s, h, \mathsf{pk}, \mathsf{sk})$, the variables (u, z, v) are completely determined by the following equations:

$$
u = g^s \cdot \mathsf{pk}^{-c} \tag{1.1}
$$

$$
z = h^{\mathsf{sk}} = g^{\log_g(h)\cdot \mathsf{sk}} = \left(g^{\mathsf{sk}}\right)^{\log_g(h)}\tag{1.2}
$$

$$
= \mathsf{pk}^{\log_g(h)} \tag{1.3}
$$

$$
v = h^s \cdot z^{-c} \tag{1.4}
$$

In the simulation of $Sign(\mathsf{sk}, m)$:

 \bullet c and s are uniformly random and independent. Also, h is uniformly random due to the randomness of κ .

• Given $(c, s, h, \mathsf{pk}, \mathsf{sk})$, the variables (u, z, v) are completely determined by the same equations – [1.1,](#page-3-1) [1.3,](#page-3-2) 1.4 – as in the real signature game.

Lemma 1.4 If A_{CDH} reaches case 1, then with overwhelming probability:

$$
g^{a \cdot b} = z^* \cdot (g^a)^{-d}
$$

Proof. Recall that A's output is $(m^*, (z^*, s^*, c^*))$, and let the variables computed by Verify(pk, m^* , (z^*, s^*, c^*)) be the following:

$$
u' = g^{s^*} \cdot \mathsf{pk}^{-c^*}
$$

\n
$$
h' = H(u')
$$

\n
$$
v' = h'^{s^*} \cdot (z^*)^{-c^*}
$$

\n
$$
c' = G(m^*, g, h', \mathsf{pk}, z^*, u', v')
$$

Next, lemma [1.5](#page-4-1) shows that the probability that A outputs an $(m^*, (z^*, s^*, c^*))$ such that Verify(pk, m^* , (z^*, s^*, c^*)) = 1 but $\log_g(pk) \neq \log_{h'}(z^*)$ is negligible. So from now on, let us assume that $\log_g(\mathsf{pk}) = \log_{h'}(z^*)$. Then:

$$
z^* = h'^{\log_g(\text{pk})} = g^{(b+d)\cdot a} = g^{a\cdot b + a\cdot d}
$$

$$
z^* \cdot (g^a)^{-d} = g^{a\cdot b}
$$

Lemma 1.5 The probability that A outputs an $(m^*, (z^*, s^*, c^*))$ such that Verify($pk, m^*, (z^*, s^*, c^*)$) = 1 but $\log_g(\mathsf{pk}) \neq \log_{h'}(z^*)$ is negligible.

Proof. Verify(pk, m^* , (z^*, s^*, c^*)) = 1 only if c' satisfies $u' = g^{s^*} \cdot pk^{-c'}$ and $v' = h'^{s^*} \cdot (z^*)^{-c'}$. However, the value of $c' = G(m^*, g, h', \mathsf{pk}, z^*, u', v')$ is sampled uniformly at random after $(m^*, g, h', \mathsf{pk}, z^*, u', v')$ have been fixed.

For any $(m^*, g, h', \mathsf{pk}, z^*, u', v')$, if $\log_g(\mathsf{pk}) \neq \log_{h'}(z^*)$, then there is at most one value of (s^*, c') such that $u' = g^{s^*} \cdot \mathsf{pk}^{-c'}$ and $v' = h'^{s^*} \cdot (z^*)^{-c'}$ (lemma [1.6\)](#page-4-2).

With overwhelming probability, each query $(m^*, g, h', \mathsf{pk}, z^*, u', v')$ to G for which $\log_g(\mathsf{pk}) \neq$ $\log_{h'}(z^*)$ will result in a c' such that $u' \neq g^{s^*} \cdot \mathsf{pk}^{-c'}$ or $v' \neq h'^{s^*} \cdot (z^*)^{-c'}$. In this case, there is no value of c^* for which Verify(pk, m^* , (z^*, s^*, c^*)) = 1.

Since A is limited to making only polynomially-many queries to G , A has negligible probability of finding a $(m^*, (z^*, s^*, c^*))$ such that Verify(pk, $m^*, (z^*, s^*, c^*)) = 1$ but $\log_g(pk) \neq$ $\log_{h'}(z^*)$.

Lemma 1.6 For a given $(m, g, h, \text{pk}, z, u, v)$, if $\log_g(\text{pk}) \neq \log_h(z)$, then there is at most one value of (s, c) for which $u = g^s \cdot \mathsf{pk}^{-c}$ and $v = h^s \cdot z^{-c}$.

Proof. Let $sk = \log_g(k)$ and let $sk' = \log_h(z)$. Also, let $k = \log_g(u)$ and let $k' = \log_h(v)$. Then

$$
g^s \cdot \mathsf{pk}^{-c} = g^{s-c \cdot \mathsf{sk}}
$$

$$
h^s \cdot z^{-c} = h^{s-c \cdot \mathsf{sk}'}
$$

Next,

$$
u = g^s \cdot \mathbf{p} \mathbf{k}^{-c} \iff k = s - c \cdot \mathbf{sk}
$$

$$
v = h^s \cdot z^{-c} \iff k' = s - c \cdot \mathbf{sk'}
$$

If $sk \neq sk'$, then the only way that $u = g^s \cdot pk^{-c}$ and $v = h^s \cdot z^{-c}$ is if

$$
c = \frac{k - k'}{\mathsf{sk}' - \mathsf{sk}} \text{ and } s = k + c \cdot \mathsf{sk} \tag{1.5}
$$

 \overline{r}

Lemma 1.7 If A_{CDH} reaches case 2, then with overwhelming probability:

$$
g^{a \cdot b} = (g^b)^{(s^* - s')/(c^* - c')}
$$

Proof. In case 2,

$$
u^*=g^{s^*}\cdot \mathsf{pk}^{-c^*}=g^{s'}\cdot \mathsf{pk}^{-c}
$$

If $c^* \neq c'$, then

$$
pk = ga = g(s*-s')/(c*-c')
$$

$$
a = \frac{s* - s'}{c* - c'}
$$

$$
ga b = (gb)(s*-s')/(c*-c')
$$

It just remains to show that $c^* \neq c'$. Since only polynomially-many queries are made to G, with overwhelming probabiliy over the randomness of G , every distinct query to G produces a unique output value. We also know that m^* was not previously queried to $Sign(s, \cdot)$, so $m^* \neq m'$. Since

$$
c^* = G(m^*, g, h^*, \mathsf{pk}, z^*, u^*, v^*)
$$

$$
c' = G(m', g, h', \mathsf{pk}, z', u', v')
$$

then $c^* \neq c'$ with overwhelming probability.

2 Additively Homomorphic Encryption (AHE)

Some natural encryption schemes, such as El Gamal encryption, are additively homomor-phic^{[1](#page-5-1)}, meaning that $Enc(m^{(1)})$ and $Enc(m^{(2)})$ can be combined into a valid encryption of $m^{(1)} + m^{(2)}$ without knowledge of the secret key. It turns out that this property is sufficient to construct public-key encryption. We will show that secret-key additively homomorphic encryption implies public-key encryption.

¹This is assuming we use the additive notation for operations over the cryptographic group.

Definition 2.1 (Additively Homomorphic Encryption) Let (Gen, Enc, Dec, H_{\oplus}) be four PPT algorithms with message space $\mathcal{M} = \{0, 1\}$ and ciphertext space C. Let H_{\oplus} map $\mathcal{C}^{\ell} \to \mathcal{C}$, for any $\ell = \text{poly}(\lambda)$.

Next, (Gen, Enc, Dec, H_{\oplus}) is a secret-key additively homomorphic encryption (AHE) scheme^{[2](#page-6-0)} if the following properties are satisfied:

• Perfect Correctness: For any $\ell = \text{poly}(\lambda)$ messages $(m^{(1)}, \ldots, m^{(\ell)}) \in \{0,1\}^{\ell}$.

$$
\Pr\bigg[{\sf Dec}\Big({\sf sk},H_{\oplus}\big[{\sf Enc}({\sf sk},m^{(1)}),\ldots,{\sf Enc}({\sf sk},m^{(\ell)})\big]\Big) = \sum_{i\in [\ell]} m^{(i)} \mod 2\bigg] = 1
$$

- Compactness: There exists a polynomial function $m(\cdot)$ such that for any $\ell = \text{poly}(\lambda)$ $\textit{messages } (m^{(1)}, \ldots, m^{(\ell)}) \in \{0,1\}^{\ell}, \textit{ the length of } H_{\oplus} \big[\textsf{Enc}(\textsf{sk}, m^{(1)}), \ldots, \textsf{Enc}(\textsf{sk}, m^{(\ell)}) \big]$ is upper-bounded by $m(\lambda)$.^{[3](#page-6-1)}
- CPA security: (Gen, Enc, Dec) constitute a CPA secure encryption scheme.

The following construction builds a public-key encryption scheme (Gen', Enc', Dec') from a secret-key AHE scheme (Gen, Enc, Dec, H_{\oplus}).

1. Gen'(1^{λ}): Compute the following:

$$
sk \leftarrow Gen(1^{\lambda})
$$

\n
$$
\ell' = 4m(\lambda)
$$

\n
$$
r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'} \setminus \{0^{\ell'}\}
$$

\n
$$
X_i \leftarrow Enc(\text{sk}, r_i), \quad \forall i \in [\ell']
$$

\n
$$
\text{pk} = (X_1, \dots, X_{\ell'}, r)
$$

Then output (pk,sk).

- 2. $Enc'(pk, m)$:
	- (a) Sample $s \in \{0,1\}^{\ell'}$ uniformly at random such that $\langle r, s \rangle = m^{4}$ $\langle r, s \rangle = m^{4}$ $\langle r, s \rangle = m^{4}$.
	- (b) Let X_s be a tuple of all the X_i -values for which $s_i = 1$.
	- (c) Compute and output $c = H_{\oplus}(X_s)$.

3. Dec'(sk, c): Output Dec(sk, c).

 $\langle f, s \rangle = \sum_{i \in [\ell']} r_i \cdot s_i \mod 2$. We can sample s using rejection sampling: sample $s \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'}$ and check whether $\langle r, s \rangle = m$. If not, then reject this s and repeat the procedure.

 $^{2}Public-key$ additively homomorphic encryption is defined similarly, except (Gen, Enc, Dec) are a public-key encryption scheme, H_{\oplus} takes pk as input, and Enc takes pk, instead of sk, as input.

³Note that $m(\lambda)$ is independent of ℓ .

Question: Prove that if $(\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec}, H_{\oplus})$ is a secret-key AHE scheme, then $(\mathsf{Gen}', \mathsf{Enc}', \mathsf{Dec}')$ satisfies (1) CPA security and (2) the following notion of perfect correctness:

$$
\Pr\left[\text{Dec}'(\text{sk}, \text{Enc}'(\text{pk}, m)) = m\right] = 1, \quad \forall m \in \{0, 1\}
$$

Solution This proof is based on [\[Rot11\]](#page-10-1).

Lemma 2.2 (Gen', Enc', Dec') satisfies perfect correctness.

Proof. For any message $m \in \{0, 1\}$, let $c = \text{Enc}'(\text{pk}, m)$. Then there exists some $s \in \{0, 1\}^{\ell'}$ such that $\langle r, s \rangle = m$ and $c = H_{\oplus}(X_s)$.

Then:

$$
\begin{aligned} \text{Dec}'\big[\mathsf{sk}, \textsf{Enc}'(\mathsf{pk}, m)\big] &= \textsf{Dec}\big(\mathsf{sk}, H_{\oplus}(X_s)\big) \\ &= \textsf{Dec}\Big(\mathsf{sk}, H_{\oplus}\big[\big(\textsf{Enc}(\mathsf{sk}, r_i)\big)_{\forall i \in [\ell'] : s_i = 1}\big]\Big) \\ &= \sum_{i \in [\ell'] : s_i = 1} r_i \mod 2 \\ &= \sum_{i \in [\ell']} r_i \cdot s_i \mod 2 = \langle r, s \rangle \\ &= m \end{aligned}
$$

Therefore, (Gen', Enc', Dec') satisfies perfect correctness.

Lemma 2.3 (Gen', Enc', Dec') satisfies CPA security.

Proof. Consider the following sequence of hybrids:

- \mathcal{H}_0 : The CPA security game for (Gen', Enc', Dec'). Without loss of generality, we can assume that the adversary's challenge messages are $m_0 = 0$ and $m_1 = 1$.
	- 1. Setup: The challenger computes $(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}'(1^{\lambda})$ and sends pk to A.
	- 2. **Challenge:** The adversary submits messages $m_0 = 0$ and $m_1 = 1$. The challenger samples $b \leftarrow \{0, 1\}$ and computes $c = \text{Enc}'(\text{pk}, m_b)$ as follows: They sample $s \stackrel{\$}{\leftarrow} \{s' \in \{0,1\}^{\ell'} : m_b = \langle r, s' \rangle\}$ and compute $c = H_{\bigoplus}(X_s)$.^{[5](#page-7-0)}

Then they send c to A .

- 3. Response: A responds with $b' \in \{0,1\}$. The output of the hybrid is 1 if $b = b'$ and 0 otherwise.
- \mathcal{H}_1 : Same as \mathcal{H}_0 , except for all $i \in [\ell'], X_i = \mathsf{Enc}(\mathsf{sk}, r_i)$ is replaced with

$$
X'_i = \mathsf{Enc}(\mathsf{sk}, 0)
$$

⁵Note that for each $b \in \{0, 1\}$, $m_b = b$.

- \mathcal{H}_2 : Same as \mathcal{H}_1 , except instead of sampling $b \stackrel{\$}{\leftarrow} \{0,1\}$ and then sampling $s \stackrel{\$}{\leftarrow} \{s' \in \mathcal{H}_1\}$ $\{0,1\}^{\ell'}$: $m_b = \langle r, s' \rangle\}$, the challenger first samples $s \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'}$ and then computes $b = m_b = \langle r, s \rangle$.
- \mathcal{H}_3 : Same as \mathcal{H}_1 , except instead of sampling $r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'} \setminus \{0^{\ell'}\}$ and $s \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'}$, the challenger samples $r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'}$ and $s \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'} \setminus \{0^{\ell'}\}.$

Claim 2.4 $\left|\Pr[\mathcal{H}_0 \to 1] - \Pr[\mathcal{H}_3 \to 1]\right| = \mathsf{negl}(\lambda)$

Proof. \mathcal{H}_0 and \mathcal{H}_1 are indistinguishable due to the CPA security of (Gen, Enc, Dec).

 \mathcal{H}_1 and \mathcal{H}_2 are perfectly indistinguishable because the only difference between the two hybrids is the order in which b and s are sampled, but the joint distribution of (b, s) is the same in both hybrids.

Since $r \neq 0^{\ell'}$, then $\langle r, s \rangle = 0$ for exactly half of the s-values in $\{0, 1\}^{\ell'}$, and $\langle r, s \rangle = 1$ for the other half. Therefore, if s is sampled uniformly at random from $\{0,1\}^{\ell'}$, then $b = \langle r, s \rangle$ will be uniformly random over $\{0,1\}$ due to the randomness of s.

 \mathcal{H}_2 and \mathcal{H}_3 are statistically indistinguishable because the distribution of (r, s) in the two hybrids is statistically close.

Then

$$
|\Pr[\mathcal{H}_0 \to 1] - \Pr[\mathcal{H}_3 \to 1]| = \mathsf{negl}(\lambda)
$$

Claim 2.5 $Pr[\mathcal{H}_3 \to 1] = \frac{1}{2} + \mathsf{negl}(\lambda)$

Proof. We will use the leftover hash lemma to show that from the adversary's view in \mathcal{H}_3 , b is statistically close to uniformly random.

First, let us define a hash function h_r :

$$
h_r(s) = \langle r, s \rangle
$$

where $r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'}$ and $s \in \{0,1\}^{\ell'} \setminus \{0^{\ell'}\}.$ We claim that h_r is pairwise-independent. Second, in \mathcal{H}_3 , the variables (X', r, s, c, b) are sampled as follows:

$$
X' = (X'_1, ..., X'_{\ell'}) = (\text{Enc}(sk, 0), ..., \text{Enc}(sk, 0))
$$

\n
$$
r \stackrel{\$}{\leftarrow} \{0, 1\}^{\ell'}
$$

\n
$$
s \stackrel{\$}{\leftarrow} \{0, 1\}^{\ell'} \setminus \{0^{\ell'}\}
$$

\n
$$
c = H_{\oplus}(X'_s)
$$

\n
$$
b = h_r(s)
$$

The adversary receives (X', c, r) and is asked to guess $h_r(s)$. Given (X', c) , the variables (r, s) are uniformly random over $\{0,1\}^{\ell'} \times S_{X',c}$, where:

$$
S_{X',c} = \{s' \in \{0,1\}^{\ell'}\backslash \{0^{\ell'}\} : c = H_{\oplus}(X'_s)\}
$$

I

By the leftover hash lemma (lemma [2.6\)](#page-9-0), for $b^* \stackrel{\$}{\leftarrow} \{0,1\}$, the statistical distance between

$$
(X', c, r, h_r(s)) \text{ and } (X', c, r, b^*)
$$

\nis $2\sqrt{\frac{2}{|S_{X',c}|}}$.
\nThird,
\n
$$
Pr[\mathcal{H}_3 \to 1] = \Pr_{X',c,r,s}[\mathcal{A}(X',c,r) \to h_r(s)] = \mathbb{E}_{X',c} \left[\Pr_{r,s}[\mathcal{A}(X',r,c) \to h_r(s)|X',c] \right]
$$

\n
$$
= \mathbb{E}_{X'} \left[\sum_c \Pr_{s} (c = H_{\oplus}(X'_s)|X') \cdot \Pr_{r,s}[\mathcal{A}(X',r,c) \to h_r(s)|X',c] \right]
$$

\n
$$
= \mathbb{E}_{X'} \left[\sum_c \frac{|S_{X',c}|}{2^{\ell'-1}} \cdot \Pr_{r,s}[\mathcal{A}(X',r,c) \to h_r(s)|X',c] \right]
$$

\n
$$
\leq \mathbb{E}_{X'} \left[\sum_c \frac{|S_{X',c}|}{2^{\ell'-1}} \cdot \left(\Pr_{r,s,b^*}[\mathcal{A}(X',r,c) \to b^*|X',c] + 2\sqrt{\frac{2}{|S_{X',c}|}} \right) \right]
$$

\n
$$
= \mathbb{E}_{X'} \left[\sum_c \frac{|S_{X',c}|}{2^{\ell'-1}} \cdot \left(\frac{1}{2} + 2\sqrt{\frac{2}{|S_{X',c}|}} \right) \right]
$$

\n
$$
= \frac{1}{2} + \mathbb{E}_{X'} \left[\sum_c 2^{-(\ell'-1)} \cdot 2\sqrt{2} \cdot \sqrt{|S_{X',c}|} \right]
$$

\n
$$
\leq \frac{1}{2} + 2\sqrt{2} \cdot 2^{-(\ell'-1)} \cdot \mathbb{E}_{X'} \left[\sum_c 2^{\ell'/2} \right]
$$

\n
$$
\leq \frac{1}{2} + 2\sqrt{2} \cdot 2^{-(\ell'-1)} \cdot \mathbb{E}_{X'} \left[2^{m} \cdot 2^{\ell/2} \right] = \frac{1}{2} + 2\sqrt{2} \cdot 2^{m-\ell'/2+1}
$$

\n
$$
= \frac{1}{2} + \log(\lambda)
$$

Lemma 2.6 (Leftover Hash Lemma) Let h_r be a pairwise-independent hash function with a single-bit output. For a given subset S of the domain of h_r , let $r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell'}$, $s \stackrel{\$}{\leftarrow} S$, and $b^* \stackrel{\$}{\leftarrow} \{0,1\}$. Then the statistical distance between

$$
(r, h_r(s)) \quad \text{and} \quad (r, b^*)
$$

is $2\sqrt{\frac{2}{|S|}}$.

A version of this lemma is stated in [\[Rot11\]](#page-10-1), footnote 7, and [\[Gol08\]](#page-10-2), theorem D.5.

Putting together the previous claims, we have that $Pr[\mathcal{H}_0 \to 1] \leq \frac{1}{2} + \mathsf{negl}(\lambda)$. Since \mathcal{H}_0 is the CPA security game, this shows that (Gen', Enc', Dec') satisfies $C\overline{P}A$ security.

References

- [CM05] Benoît Chevallier-Mames. An efficient cdh-based signature scheme with a tight security reduction. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, pages 511–526, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
- [Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press, USA, 1 edition, 2008.
- [Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In Yuval Ishai, editor, Theory of Cryptography, pages 219–234, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.