CS 276: Homework 4

Due Date: Friday September 27th, 2024 at 8:59pm via Gradescope

1 Carter-Wegman Message Authentication Code

The Carter-Wegman MAC is built from a PRF and a hash function as follows. Let p be a large prime. Let n be the security parameter. Let $F : \mathcal{K}_F \times \{0,1\}^n \to \mathbb{Z}_p$ be a secure PRF, and let $H : \mathcal{K}_H \times \mathcal{M} \to \mathbb{Z}_p$ be a hash function. Next:

1. MAC takes a key $(k_H, k_F) \in \mathcal{K}_H \times \mathcal{K}_F$ and a message $m \in \mathcal{M}$. Then MAC samples $r \stackrel{\$}{\leftarrow} \{0,1\}^n$ and computes:

$$v = H(k_H, m) + F(k_F, r)$$

Finally MAC outputs (r, v).

2. Verify takes a key $(k_H, k_F) \in \mathcal{K}_H \times \mathcal{K}_F$, a message $m \in \mathcal{M}$, and a tag $(r, v) \in \{0, 1\}^n \times \mathbb{Z}_p$. Then Verify checks that $v = H(k_H, m) + F(k_F, r)$. If so, Verify outputs 1 (accept). If not, Verify outputs 0 (reject).

Now we will consider two possible choices for H:

1. H_1 takes a key $k_H \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and an input $m = (m_1, \ldots, m_\ell) \in \mathbb{Z}_p^\ell$, where ℓ is polynomial in n. Then

$$H_1(k_H, m) = k_H^{\ell} + \sum_{i=1}^{c} k_H^{\ell-i} \cdot m_i$$

2. $H_2(k_H, m) = k_H \cdot H_1(k_H, m)$

Question: Prove that the Carter-Wegman MAC is insecure if it is constructed with $H = H_1$, but it is secure if it is constructed with $H = H_2$.

The following definition of MAC security will be useful.

Definition 1.1 (MAC Security [KL14]) A MAC is secure if for any non-uniform PPT adversary A,

$$\Pr[\mathsf{MAC}\operatorname{-}\mathsf{Forge}_{\mathcal{A}}(n) \to 1] \le \mathsf{negl}(n)$$

MAC-Forge_{\mathcal{A}}(*n*):

- 1. Setup: The challenger samples k uniformly from the key space. A is given 1^n .
- 2. Query: The adversary submits a message $m^{(i)}$; then the challenger computes a tag $t^{(i)} \leftarrow \mathsf{MAC}(k, m^{(i)})$ and sends it to the adversary. The adversary may submit any polynomial number of message queries.

Let $Q = \{(m^{(1)}, t^{(1)}), \dots, (m^{(q)}, t^{(q)})\}$ be the set of messages $m^{(i)}$ submitted in the query phase along with the tags $t^{(i)}$ computed by MAC.

3. Forgery: The adversary outputs a message-tag pair (m^*, t^*) . The output of the game is 1 if $(m^*, t^*) \notin Q$ and $\operatorname{Verify}(k, m^*, t^*) = 1$. The output is 0 otherwise.

Solution

Theorem 1.2 The Carter-Wegman MAC construction is insecure if $H = H_1$.

Proof. Here is an adversary \mathcal{A} that breaks the security of the scheme:

- 1. The adversary submits a query $m^{(1)} = (0, \ldots, 0, 1) \in \mathbb{Z}_p^{\ell}$ and receives the tag $t^{(1)} = (r, v)$, where $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$ and $v = k_H^{\ell} + 1 + F(k_R, r)$.
- 2. The adversary outputs $m^* = (0, ..., 0, 2)$ and $t^* = (r, v + 1)$.

Note that $(m^*, t^*) \notin \mathcal{Q}$ because $m^* \neq m$. Furthermore, (m^*, t^*) will pass verification. Verify (k, m^*, t^*) outputs 1 if

$$H_1(k_H, m^*) + F(k_F, r) = v + 1$$

This does occur because

$$H_1(k_H, m^*) + F(k_F, r) = k_H^{\ell} + 2 + F(k_R, r)$$

= v + 1

This adversary wins the MAC security game with probability 1, so the MAC construction is insecure.

Theorem 1.3 The Carter-Wegman MAC construction is secure if $H = H_2$.

Proof. Consider the following hybrids:

- \mathcal{H}_0 is the MAC-Forge_A(n) security game:
 - 1. The challenger samples $k_H \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and $k_F \stackrel{\$}{\leftarrow} \mathcal{K}_F$. \mathcal{A} is given 1^n .
 - 2. \mathcal{A} gets query access to $\mathsf{MAC}((k_H, k_F), \cdot)$. Upon receiving query m, the challenger samples $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$, computes

$$v = H(k_H, m) + F(k_F, r)$$

and returns t = (r, v). Then the challenger appends (m, (r, v)) to Q.

- 3. \mathcal{A} outputs $(m^*, (r^*, v^*))$. If $(m^*, (r^*, v^*)) \notin \mathcal{Q}$, and $v^* = H(k_H, m^*) + F(k_F, r^*)$, then the output of the hybrid is 1. Otherwise the output is 0.
- \mathcal{H}_1 is the same as \mathcal{H}_0 , except $F(k_F, r)$ is replaced with a truly random function R that maps $\{0,1\}^n \to \mathbb{Z}_p$.
 - 1. The challenger samples $k_H \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and the truly random function $R: \{0,1\}^n \to \mathbb{Z}_p$. \mathcal{A} is given 1^n .
 - 2. \mathcal{A} may submit queries to MAC. Upon receiving query m, the challenger samples $r \stackrel{\$}{\leftarrow} \{0,1\}^n$, computes

$$v = H(k_H, m) + R(r)$$

and returns t = (r, v). Then the challenger appends (m, (r, v)) to Q.

3. \mathcal{A} outputs $(m^*, (r^*, v^*))$. If $(m^*, (r^*, v^*)) \notin \mathcal{Q}$, and $v^* = H(k_H, m^*) + R(r^*)$, then the output of the hybrid is 1. Otherwise the output is 0.

Claim 1.4 $\left| \Pr[\mathcal{H}_0 \to 1] - \Pr[\mathcal{H}_1 \to 1] \right| = \mathsf{negl}(n)$

Proof. This follows from the PRG security of F.

Claim 1.5 $\Pr[\mathcal{H}_1 \to 1] = \operatorname{negl}(n)$

Proof.

- 1. In \mathcal{H}_1 , with overwhelming probability, the challenger never samples the same *r*-value twice. If every query *i* uses a unique $r^{(i)}$, then $R(r^{(i)})$ will be a fresh random value. Additionally $(v^{(1)}, \ldots, v^{(q)})$ will be independent of each other, k_H , and the messages $(m^{(1)}, \ldots, m^{(q)})$. In particular, k_H will be uniformly random in the adversary's view and independent of the adversary's final output $(m^*, (r^*, v^*))$.
- 2. If r^* does not match any $r^{(i)}$ -value that was previously sampled by the challenger, then $R(r^*)$ will be uniformly random and independent of the adversary's view. So

$$\Pr_{R}[v^{*} = H(k_{H}, m^{*}) + R(r^{*})] = \Pr_{R}[R(r^{*}) = v^{*} - H(k_{H}, m^{*})]$$
$$= \frac{1}{p} = \operatorname{negl}(n)$$

3. Let us consider the case where $r^* = r^{(i)}$ for some query $i \in [q]$, but $m^* \neq m^{(i)}$. Next $v^* = H(k_H, m^*) + R(r^*)$ only if:

$$v^* = H(k_H, m^*) + R(r^{(i)})$$

$$0 = H(k_H, m^*) - H(k_H, m^{(i)}) + H(k_H, m^{(i)}) + R(r^{(i)}) - v^*$$

$$= \sum_{j=1}^{\ell} k_H^{\ell+1-j} \cdot (m_j^* - m_j^{(i)}) + v^{(i)} - v^*$$

$$= \sum_{j'=1}^{\ell} k_H^{j'} \cdot (m_{\ell+1-j'}^* - m_{\ell+1-j'}^{(i)}) + v^{(i)} - v^*$$

Let

$$f(X) = \sum_{j'=1}^{\ell} X^{j'} \cdot (m_{\ell+1-j'}^* - m_{\ell+1-j'}^{(i)}) + v^{(i)} - v^*$$

The degree of f(X) is ≥ 1 because for some index j', $m^*_{\ell+1-j'} \neq m^{(i)}_{\ell+1-j'}$. Then $v^* = H(k_H, m^*) + R(r^*)$ only if:

 $0 = f(k_H)$

However, k_H is uniformly random given the description of f, so $\Pr_{k_H}[f(k_H) = 0] \leq \frac{\ell}{p} = \operatorname{\mathsf{negl}}(n)$. This shows that the $\Pr[\mathcal{H}_1 \to 1] = \operatorname{\mathsf{negl}}(n)$.

Corollary 1.6 $\Pr[\mathsf{MAC-Forge}_{\mathcal{A}}(n) \to 1] = \mathsf{negl}(n)$

Therefore, the MAC scheme is secure.

3

References

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.