CS 276: Homework 3

Due Date: Friday September 27th, 2024 at 8:59pm via Gradescope

This problem is based on [DY04, BMR10].

1 A Pseudorandom Function Based on Diffie-Hellman

Let us construct a more efficient variant of the Naor-Reingold PRF.

Definition 1.1 (PRF Construction) Let \mathbb{G} be a cryptographic group of prime order p. Let $\ell \in \mathbb{N}$ be polynomial in λ . Next, let $s^{*n} = (s_1, \ldots, s_n, h)$ be sampled from $\mathcal{S}^{*n} := \mathbb{Z}_p^n \times \mathbb{G}$, and let $x^{*n} = (x_1, \ldots, x_n)$ be drawn from $\mathcal{X}^{*n} = [\ell]^n$. Finally, define $F^{*n} : \mathcal{S}^{*n} \times \mathcal{X}^{*n} \to \mathbb{G}$ as follows:

$$F^{*n}(s^{*n}, x^{*n}) = \begin{cases} 1, & \prod_{i \in [n]} (s_i + x_i) = 0 \\ h^{1/\prod_{i \in [n]} (s_i + x_i)}, & else \end{cases}$$

This construction is more efficient than Naor-Reingold's PRF. F^{*n} can handle an input x^{*n} of length $n \cdot \lg(\ell)$ bits, whereas the same seed in the Naor-Reingold PRF would handle inputs of length n bits.

Question: Prove that the function F^{*n} given in definition 1.1 is a secure PRF assuming the ℓ -DDH assumption (assumption 1.2).

Assumption 1.2 (ℓ -DDH Assumption) Let \mathbb{G} be a cryptographic group of prime order p, and let $\ell < p$. Then for any PPT adversary \mathcal{A} , the following two hybrids are indistinguishable:

- \mathcal{G}_0 : The challenger samples $(\alpha, g) \stackrel{\$}{\leftarrow} \mathbb{Z}_p \times \mathbb{G}$ and then gives the adversary $(g, g^{\alpha}, g^{\alpha^2}, \dots, g^{\alpha^{\ell}}, g^{1/\alpha})$.
- \mathcal{G}_1 : The challenger samples $(\alpha, g, r) \stackrel{\$}{\leftarrow} \mathbb{Z}_p \times \mathbb{G} \times \mathbb{G}$ and then gives the adversary $(g, g^{\alpha}, g^{\alpha^2}, \dots, g^{\alpha^{\ell}}, r).$

Finally, when $\alpha = 0$, then define $g^{1/\alpha} = 1$.

Note that p must be super-polynomial in λ because otherwise ℓ -DDH does not hold.

Hint: You may wish to use the following strategy. First, let us define a PRF f over a smaller domain $[\ell]$. Let f take a seed $(s,h) \in \mathbb{Z}_p \times \mathbb{G}$ and an input $x \in [\ell]$ and output:

$$f((s,h),x) = \begin{cases} 1, & s+x = 0\\ h^{1/(s+x)}, & \text{else} \end{cases}$$

First prove that f is a secure PRF when ℓ is polynomial in the security parameter λ .

Second, note that F^{*n} is an *n*-fold composition of f, where the output of one invocation of f becomes the *h*-value of the next invocation of f.

$$F^{*n}((s_1,\ldots,s_n,h),(x_1,\ldots,x_n)) = f((s_n,\ldots,f((s_2,f((s_1,h),x_1)),x_2)\ldots),x_n)$$

Then use a similar proof technique to the one used for Naor-Reingold's PRF to prove that the composition of this small-domain PRF f is also a PRF.

Solution

Theorem 1.3 f is a secure *PRF*.

Proof. We will create $\ell + 1$ hybrids, and each new hybrid will take a different input $x \in [\ell]$ and switch f(x) from pseudorandom to random. Each successive hybrid is distinguishable from the one before it with only negligible advantage. Since ℓ is polynomial in λ , \mathcal{H}_0 and \mathcal{H}_ℓ will be distinguishable with only negligible advantage as well.

• \mathcal{H}_0 is the PRF security game for f. The challenger samples $(s, h) \stackrel{\$}{\leftarrow} \mathbb{Z}_p \times \mathbb{G}$. Then \mathcal{A} submits a query $x \in [\ell]$, and the challenger responds with

$$F(x) = \begin{cases} 1, & s+x = 0\\ h^{1/(s+x)}, & \text{else} \end{cases}$$

The adversary may submit many queries. Finally, the adversary outputs a bit b, which is the output of the hybrid.

Then for every $x \in [\ell]$, let \mathcal{H}_x be defined as follows:

• \mathcal{H}_x is the PRF security game for f except inputs $\leq x$ are reprogrammed to random values. The challenger samples $(s,h) \stackrel{\$}{\leftarrow} \mathbb{Z}_p \times \mathbb{G}$ as well as $(r_1, \ldots, r_x) \stackrel{\$}{\leftarrow} \mathbb{G}^x$. Then \mathcal{A} submits a query $x' \in [\ell]$, and the challenger responds with

$$F(x') = \begin{cases} r_{x'}, & x' \le x \\ 1, & s+x' = 0 \\ h^{1/(s+x')}, & \text{else} \end{cases}$$

The adversary may submit many queries. Finally, the adversary outputs a bit b, which is the output of the hybrid.

Note that in \mathcal{H}_{ℓ} , every input receives a uniformly random respondse $r_{x'}$.

Lemma 1.4 For any $x \in [\ell]$ and any PPT adversary \mathcal{A} , $\left| \Pr[\mathcal{H}_{x-1} \to 1] - \Pr[\mathcal{H}_x \to 1] \right| \leq \operatorname{negl}(\lambda)$.

Proof. Given an adversary \mathcal{A}_{PRF} for which $|\Pr[\mathcal{H}_{x-1} \to 1] - \Pr[\mathcal{H}_x \to 1]|$ is non-negligible, we can construct an adversary \mathcal{A}_{DDH} that breaks the ℓ -DDH assumption.

Construction of \mathcal{A}_{DDH} :

- 1. Receive $(g, g^{\alpha}, g^{\alpha^2}, \dots, g^{\alpha^{\ell}}, G)$, where $G = g^{1/\alpha}$ or G = r for $(\alpha, g, r) \stackrel{\$}{\leftarrow} \mathbb{Z}_p \times \mathbb{G} \times \mathbb{G}$.
- 2. For a variable $A \in \mathbb{Z}_p$ and any $x' \in [\ell]$, compute the coefficients of the following polynomials.

$$p(A) = \prod_{x'' \in [\ell]: x'' > x} (A - x + x'') = \sum_{i=0}^{\ell-1} c_i \cdot A^i$$
$$p_{x'}(A) = \frac{p(A)}{A - x + x'} = \sum_{i=0}^{\ell-2} d_{x',i} \cdot A^i$$

3. Let $s = \alpha - x$. s is well-defined, even though \mathcal{A}_{DDH} does not know α and cannot directly compute s. Then compute:

$$h = \prod_{i=0}^{\ell-1} \left(g^{\alpha^i} \right)^{c_i} = g^{p(\alpha)}$$

- 4. For each x' < x, sample $r_{x'} \stackrel{\$}{\leftarrow} \mathbb{G}$, and set $F(x') = r_{x'}$.
- 5. Set

$$F(x) = G^{c_0} \cdot \prod_{i=1}^{\ell-1} \left(g^{\alpha^{i-1}} \right)^c$$

6. For each x' > x, compute

$$h^{1/(s+x')} = g^{p(\alpha)/(\alpha-x+x')} = g^{p_{x'}(\alpha)} = \prod_{i=0}^{\ell-2} \left(g^{\alpha^i}\right)^{d_{x',i}}$$

and set $F(x') = h^{1/(s+x')}$.

7. Run \mathcal{A}_{PRF} . Respond to any queries x' with the value of F(x') that was computed earlier. When \mathcal{A}_{PRF} outputs a bit b, \mathcal{A}_{DDH} outputs b as well.

Analysis: \mathcal{A}_{DDH} correctly simulates \mathcal{H}_{x-1} when $G = g^{1/\alpha}$ and \mathcal{H}_x when G = r.

- 1. The (s, h)-values computed by \mathcal{A}_{DDH} are uniformly random over $\mathbb{Z}_p \times \mathbb{G}$ due to the randomness of α and g.
- 2. When $G = g^{1/\alpha}$,

$$F(x) = \left(g^{\alpha^{-1}}\right)^{c_0} \cdot \prod_{i=1}^{\ell-1} \left(g^{\alpha^{i-1}}\right)^{c_i} = \prod_{i=0}^{\ell-1} \left(g^{\alpha^{i-1}}\right)^{c_i}$$
$$= g^{p(\alpha)/\alpha} = g^{p(\alpha)/(s+x)}$$
$$= h^{1/(s+x)}$$

On the other hand, when G = r, then F(x) is uniformly random and independent of F(x') for any $x' \neq x$.

- 3. Finally, with overwhelming probability, $s + x' \neq 0$ for all $x' \in [\ell]$. This is because $s \stackrel{\$}{\leftarrow} \mathbb{Z}_p$, and p is superpolynomial in λ . So with overwhelming probability, in \mathcal{H}_x or \mathcal{H}_{x-1} , the adversary will never query F on an input $x' \in [\ell]$ such that s + x' = 0.
- 4. This shows that $G = g^{1/\alpha}$, \mathcal{A}_{DDH} 's messages to \mathcal{A}_{PRF} are statistically close to the messages \mathcal{A}_{PRF} receives in \mathcal{H}_{x-1} , and when G = r, \mathcal{A}_{DDH} 's messages to \mathcal{A}_{PRF} are statistically close to the messages \mathcal{A}_{PRF} receives in \mathcal{H}_x .

5. If there exists an \mathcal{A}_{PRF} such that $|\Pr[\mathcal{H}_{x-1} \to 1] - \Pr[\mathcal{H}_x \to 1]|$ is non-negligible, then \mathcal{A}_{DDH} distinguishes \mathcal{G}_0 and \mathcal{G}_1 with non-negligible advantage. This would contradict the assumed hardness of ℓ -DDH. Therefore, in fact, for any PPT \mathcal{A}_{PRF} , $|\Pr[\mathcal{H}_{x-1} \to 1] - \Pr[\mathcal{H}_x \to 1]| \leq \operatorname{negl}(\lambda)$.

Next, for any PPT \mathcal{A}_{PRF} ,

$$\left| \Pr[\mathcal{H}_0 \to 1] - \Pr[\mathcal{H}_\ell \to 1] \right| \le \ell \cdot \mathsf{negl}(\lambda) = \mathsf{negl}'(\lambda)$$

Here, we used the fact that $\ell = \text{poly}(\lambda)$, and $\text{poly}(\lambda) \cdot \text{negl}(\lambda)$ is negligible.

Finally, note that \mathcal{H}_0 and \mathcal{H}_ℓ are exactly the hybrids that the adversary is asked to distinguish in the PRF security game for f. Therefore, f is a secure PRF.

It remains to show that if f is a secure PRF and DDH is hard, then F^{*n} is also a secure PRF. The proof is given in [BMR10], theorem 7.

References

- [BMR10] Dan Boneh, Hart Montgomery, and Ananth Raghunathan. Algebraic pseudorandom functions with improved efficiency from the augmented cascade. Cryptology ePrint Archive, Paper 2010/442, 2010.
- [DY04] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. Cryptology ePrint Archive, Paper 2004/310, 2004.