
CS 276, Fall 2024 Prof. Sanjam Garg

CS 276: Homework 10
Due Date: Friday December 13th, 2024 at 8:59pm via Gradescope

1 Succinct Arguments from Folding

Succinct argument systems are a valuable tool to compress a long witness into a short proof
of the same statement. In recent years, folding has become a popular technique to construct
succinct argument systems. Each iteration of the folding algorithm halves the length of
the witness, and after log |w| iterations, the witness is constant-sized and can be published
directly.

In this homework, we will use folding to succinctly prove that the inner product of two
long vectors is equal to the claimed value. Crucially, the communication complexity of the
protocol is poly log n, where n is the length of each vector, so it is more communication-
efficient than publishing the two vectors directly. You are asked to prove lemma 1.4, which
is a form of special soundness used in the proof of knowledge soundness.

1.1 Preliminaries

Let G be a cryptographic group of prime order p, where 1
p = negl(λ). Let n ∈ N be a power

of 2. For any vector g with n components and for any i ∈ [n], let g[i] = (g1, . . . , gi), let
gL = (g1, . . . , gn

2
), and let gR = (gn

2
+1, . . . , gn).

Let us define four vectors g = (g1, . . . , gn) ∈ Gn, h = (h1, . . . , hn) ∈ Gn, a = (a1, . . . , an) ∈
Zn
p , and b = (b1, . . . , bn) ∈ Zn

p . Let the inner product of a,b be 〈a,b〉 =
∑

i∈[n] ai · bi, and let

the component-wise product of g,h be g ∗h = (g1 · h1, . . . , gn · hn). Also, let ga =
∏

i∈[n] g
ai
i .

Let us make the following hardness assumption, which is a variant of the discrete log
assumption.

Definition 1.1 (Discrete Log Relation Assumption) For any PPT adversary A and
any n ∈ N, the probability that A wins the following game is negl(λ).

1. Sample (g,h, u)
$← Gn ×Gn ×G.

2. A(g,h, u) outputs (a,b, c) ∈ Zn
p × Zn

p × Zp.

3. A wins if ga · hb · uc = 1 and (a,b, c) 6= 0. A loses otherwise.

The Inner Product Language Given a commitment P and a scalar c, the statement
being proved is that there is some witness (a,b) – committed to by P – for which c = 〈a,b〉.
Now we will state this more formally.

The following public parameters are sampled beforehand: (g,h, u)
$← Gn×Gn×G. Next,

an instance of the language is any tuple (P, c) ∈ G × Zp such that there exists a witness
(a,b) ∈ Zn

p × Zn
p such that c = 〈a,b〉 and P = ga · hb. We can view P as a binding

commitment to (a,b).
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1.2 The Protocol

The following protocol Π is a succinct argument system for the inner product language defined
above.

1. Inputs: The verifier’s input is (g,h, u, P, c), and the prover’s input is the verifier’s
input as well as (a,b).

2. Preprocessing:

(a) The verifier samples x
$← Zp\{0} and sends it to the prover.

(b) The prover and verifier each compute u′ = ux and P ′ = P · ux·c.

3. Folding: Let n be the number of components of g, and let n be a power of 2. If n = 1,
then skip to the verification step. Otherwise, for each i ∈ [lg n], do the following:

(a) The prover computes the following:

L = gaL
R · h

bR
L · u

′〈aL,bR〉

R = gaR
L · h

bL
R · u

′〈aR,bL〉

and sends (L,R) to the verifier.

(b) The verifier samples y
$← Zp\{0} and sends y to the prover.

(c) The prover and verifier each compute the following:

g← gy−1

L ∗ gy
R

h← hy
L ∗ hy−1

R

P ′ ← P ′ · Ly2 ·Ry−2

(d) The prover additionally computes the following:

a← aL · y + aR · y−1

b← bL · y−1 + bR · y

Note that each iteration of folding halves the length of g,h,a,b.

4. Verification

(a) The prover sends (a,b) to the verifier. By this time, g,h,a,b are scalars.

(b) The verifier checks whether:

P ′ = ga · hb · u′〈a,b〉

The verifier outputs 1 (accept) if the check passes and 0 (reject) if not.
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1.3 Knowledge Soundness

Π satisfies knowledge soundness, assuming the discrete log relation problem is hard (def.
1.1). The proof of knowledge soundness is somewhat involved, so we’ll walk through the
proof sketch and just ask you to prove a core lemma, which is stated in lemma 1.4 below.

Definition 1.2 (Knowledge Soundness) There exists an extractor E that runs in ex-
pected polynomial time such that for any (P, c) ∈ G × Zp and any PPT adversarial prover
P∗, if Pr[〈P∗,V〉(P, c) → accept] = nonnegl(λ), then Pr[c = 〈a,b〉 ∧ P = ga · hb : (a,b) ←
EP

∗
] = nonnegl(λ) as well.

Theorem 1.3 If the discrete log relation assumption holds (def. 1.1), then Π satisfies knowl-
edge soundness (def. 1.2).

Proof Sketch. Let us run Π with n = 2 and public inputs (g,h, u, P, c). An accepting
transcript for the protocol is a tuple tr := (x, L,R, y,a′,b′) for which

P · ux·c · Ly2 ·Ry−2
=
(
gy−1

L ∗ gy
R

)a′
·
(
hy
L ∗ hy−1

R

)b′
· ux·〈a′,b′〉

Given a prover P∗ that produces an accepting transcript with non-negligible probability,
we can rewind the prover several times to obtain 8 accepting transcripts:

tr1 = (x1, L1, R1, y1,a
′1,b′1)

tr2 = (x1, L1, R1, y2,a
′2,b′2)

tr3 = (x1, L1, R1, y3,a
′3,b′3)

tr4 = (x1, L1, R1, y4,a
′4,b′4)

tr5 = (x2, L2, R2, y5,a
′5,b′5)

tr6 = (x2, L2, R2, y6,a
′6,b′6)

tr7 = (x2, L2, R2, y7,a
′7,b′7)

tr8 = (x2, L2, R2, y8,a
′8,b′8)

with the following properties: x1 6= x2, and for every i, j ∈ [8] such that i 6= j: yi 6= yj
and yi 6= −yj . Lemma 1.4 says that from these accepting transcripts, we can extract a valid
witness (a,b).

Lemma 1.4 (Special Soundness) There is a PPT algorithm that takes the accepting tran-
scripts (tr1, . . . , tr8) defined above, and either wins the discrete log relation game (def. 1.1)
or computes a witness (a,b) for which

c = 〈a,b〉
P = ga · hb
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Question: Prove lemma 1.4.

Solution This problem is based on [BBB+17].

Lemma 1.5 There is a PPT algorithm that takes (tr1, . . . , tr4) and either computes a solution
to the discrete log relation game or computes values (a1,b1) ∈ Zn

p × Zn
p such that

P · ux1·c = ga1 · hb1 · ux1·〈a1,b1〉

Proof.

1. Since (tr1, . . . , tr4) are accepting transcripts, the following equation holds for each i ∈
[4]:

P · ux1·c · Ly2i
1 ·R

y−2
i

1 =

(
g
y−1
i

L ∗ gyi
R

)a′i

·
(

hyi
L ∗ h

y−1
i

R

)b′i

· ux1·〈a′i,b′i〉 (1.1)

2. We will take linear combinations of equation 1.1 for i ∈ [3] to separate the left-hand
side into the factors P · ux1·c, L1, R1.

(a)

Let M =

 y21 y22 y23
1 1 1

y−21 y−22 y−23


Since y1, y2, y3 are distinct, M is full-rank, so M−1 exists.

(b)

Let vL = M−1 ·
[
1 0 0

]T
= M−1 · ê1

vP = M−1 ·
[
0 1 0

]T
= M−1 · ê2

vR = M−1 ·
[
0 0 1

]T
= M−1 · ê3

(c) Now take a linear combination of equation 1.1 for i ∈ [3] with coefficients given
by vL. This yields:

∏
i∈[3]

(
P · ux1·c · Ly2i

1 ·R
y−2
i

1

)vL
i

=
∏
i∈[3]

[(
g
y−1
i

L ∗ gyi
R

)a′i

·
(

hyi
L ∗ h

y−1
i

R

)b′i

· ux1·〈a′i,b′i〉

]vL
i

(1.2)
The left-hand side can be simplified as follows:

∏
i∈[3]

(
P · ux1·c · Ly2i

1 ·R
y−2
i

1

)vL
i

= (P · ux1·c)
∑

i∈[3] v
L
i · L

∑
i∈[3] y

2
i ·vL

i

1 ·R
∑

i∈[3] y
−2
i ·v

L
i

1

= (P · ux1·c)ê
T
2 ·M ·vL

· LêT1 ·M ·vL

1 ·RêT3 ·M ·vL

1

= (P · ux1·c)〈ê2,ê1〉 · L〈ê1,ê1〉1 ·R〈ê3,ê1〉1

= L1
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Next,

let aL =

∑
i∈[3]

vL
i · y−1i · a

′i

 ||
∑

i∈[3]

vL
i · yi · a′i


bL =

∑
i∈[3]

vL
i · yi · b′i

 ||
∑

i∈[3]

vL
i · y−1i · b

′i


cL =

∑
i∈[3]

vL
i · 〈a′i,b′i〉

Note that
(∑

i∈[3] v
L
i · y

−1
i · a′i

)
and

(∑
i∈[3] v

L
i · yi · a′i

)
are vectors in Zn/2

p , so

aL ∈ Zn
p . The right-hand side of equation 1.2 is simplified as follows:

Then
∏
i∈[3]

[(
g
y−1
i

L ∗ gyi
R

)a′i

·
(

hyi
L ∗ h

y−1
i

R

)b′i

· ux1·〈a′i,b′i〉

]vL
i

=

(
g

∑
i∈[3] v

L
i ·y
−1
i ·a

′i

L · g
∑

i∈[3] v
L
i ·yi·a′i

R

)
·
(

h

∑
i∈[3] v

L
i ·yi·b′i

L · h
∑

i∈[3] v
L
i ·y
−1
i ·b

′i

R

)
· u

∑
i∈[3] v

L
i ·x1·〈a′i,b′i〉

= gaL · hbL · ux1·cL

In total, we’ve constructed aL,bL ∈ Zn
p and cL ∈ Zp such that:

L1 = gaL · hbL · ux1·cL (1.3)

(d) Likewise, take a linear combination of equation 1.1 for i ∈ [3] with coefficients
given by vP and another linear combination with coefficients given by vR. This
yields:

∏
i∈[3]

(
P · ux1·c · Ly2i

1 ·R
y−2
i

1

)vP
i

=
∏
i∈[3]

[(
g
y−1
i

L ∗ gyi
R

)a′i

·
(

hyi
L ∗ h

y−1
i

R

)b′i

· ux1·〈a′i,b′i〉

]vP
i

(1.4)

∏
i∈[3]

(
P · ux1·c · Ly2i

1 ·R
y−2
i

1

)vR
i

=
∏
i∈[3]

[(
g
y−1
i

L ∗ gyi
R

)a′i

·
(

hyi
L ∗ h

y−1
i

R

)b′i

· ux1·〈a′i,b′i〉

]vR
i

(1.5)
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Then define the following variables:

aP =

∑
i∈[3]

vP
i · y−1i · a

′i

 ||
∑

i∈[3]

vP
i · yi · a′i


bP =

∑
i∈[3]

vP
i · yi · b′i

 ||
∑

i∈[3]

vP
i · y−1i · b

′i


cP =

∑
i∈[3]

vP
i · 〈a′i,b′i〉

aR =

∑
i∈[3]

vR
i · y−1i · a

′i

 ||
∑

i∈[3]

vR
i · yi · a′i


bR =

∑
i∈[3]

vR
i · yi · b′i

 ||
∑

i∈[3]

vR
i · y−1i · b

′i


cR =

∑
i∈[3]

vR
i · 〈a′i,b′i〉

Then equations 1.4 and 1.5 simplify to:

P · ux1·c = gaP · hbP · ux1·cP (1.6)

R1 = gaR · hbR · ux1·cR (1.7)

3. We can extract a system of equations relating (aL,aP ,aR,bL,bP ,bR) or else we can
find a solution to the discrete log relation problem.

(a) For each i ∈ [4], equation 1.1 implies the following:

P · ux1·c · Ly2i
1 ·R

y−2
i

1 =

(
g
y−1
i

L ∗ gyi
R

)a′i

·
(

hyi
L ∗ h

y−1
i

R

)b′i

· ux1·〈a′i,b′i〉

= g
y−1
i ·a

′i

L · gyi·a′i
R · hyi·b′i

L · hy−1
i ·b

′i

R · ux1·〈a′i,b′i〉
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(b) Next, equations 1.3, 1.6, 1.7 imply that:

P · ux1·c · Ly2i
1 ·R

y−2
i

1 =
(
gaP · hbP · ux1·cP

)
·
(
gaL · hbL · ux1·cL

)y2i · (gaR · hbR · ux1·cR
)y−2

i

= gaP+y2i ·aL+y−2
i ·a

R · hbP+y2i ·bL+y−2
i ·b

R · ux1·(cP+y2i ·cL+y−2
i ·c

R)

= g
aP
L+y2i ·aL

L+y−2
i ·a

R
L

L · gaP
R+y2i ·aL

R+y−2
i ·a

R
R

R

· hbP
L+y2i ·bL

L+y−2
i ·b

R
L

L · hbP
R+y2i ·bL

R+y−2
i ·b

R
R

R

· ux1·(cP+y2i ·cL+y−2
i ·c

R)

1 = g
aP
L+y2i ·aL

L+y−2
i ·a

R
L−y

−1
i ·a

′i

L · gaP
R+y2i ·aL

R+y−2
i ·a

R
R−yi·a

′i

R

· hbP
L+y2i ·bL

L+y−2
i ·b

R
L−yi·b

′i

L · hbP
R+y2i ·bL

R+y−2
i ·b

R
R−y

−1
i ·b

′i

R

· ux1·(cP+y2i ·cL+y−2
i ·c

R−〈a′i,b′i〉)

(c) The exponents of (gL,gR,hL,hR, u) can be computed from (tr1, . . . , tr4), and if
any of them is non-zero, then they represent a solution to the discrete log relation
problem. Let us assume that the discrete log relation problem is hard, so from
now onward, all of the exponents must be zero, and the following equations are
satisfied:

a′i = y1i · aP
L + y3i · aL

L + y−1i · a
R
L

a′i = y−1i · a
P
R + y1i · aL

R + y−3i · a
R
R

b′i = y−1i · b
P
L + y1i · bL

L + y−3i · b
R
L

b′i = y1i · bP
R + y3i · bL

R + y−1i · b
R
R

〈a′i,b′i〉 = cP + y2i · cL + y−2i · c
R

(1.8)

(d) Next, we combine the equations above:

y1i · aP
L + y3i · aL

L + y−1i · a
R
L = a′i = y−1i · a

P
R + y1i · aL

R + y−3i · a
R
R

0 = y−3i · a
R
R + y−1i · (a

P
R − aR

L) + y1i · (aL
R − aP

L )− y3i · aL
L

Let us define some Laurent polynomials:

Let fa(Y ) = aR
R + Y 2 · (aP

R − aR
L) + Y 4 · (aL

R − aP
L )− Y 6 · aL

L

ga(Y ) = Y −3 · fa(Y )

= Y −3 · aR
R + Y −1 · (aP

R − aR
L) + Y 1 · (aL

R − aP
L )− Y 3 · aL

L

Then ga(yi) = 0 for every i ∈ [4].

(e) Claim 1.6 fa(Y ) = 0

Proof. We have already shown that ga(yi) = 0 for every i ∈ [4]. Further-
more, ga(−yi) = −ga(yi) = 0. That implies that fa(yi) = fa(−yi) = 0. Next,
{y1,−y1, y2,−y2, y3,−y3, y4,−y4} are 8 distinct values, and they are all roots of
fa(Y ). fa has degree-6, so the only way that fa has more than 6 roots is if
fa(Y ) = 0.
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(f) Since fa(Y ) = 0, the following equations hold:

aR
R = aL

L = 0

aP
R = aR

L

aP
L = aL

R

(g) By similar reasoning, we can show that:

bR
L = bL

R = 0

bP
R = bL

L

bP
L = bR

R

4. Claim 1.7 〈aP ,bP 〉 = cP

Proof.

(a) By equations 1.8, for each i ∈ [4],

a′i = yi · aP
L + y3i · aL

L + y−1i · a
R
L

= yi · aP
L + y−1i · a

P
R

b′i = y−1i · b
P
L + y1i · bL

L + y−3i · b
R
L

= y−1i · b
P
L + y1i · bP

R

cP + y2i · cL + y−2i · c
R = 〈a′i,b′i〉

= 〈(yi · aP
L + y−1i · a

P
R), (y−1i · b

P
L + yi · bP

R)〉
= y−2i · 〈a

P
R,b

P
L 〉+ 〈aP

L ,b
P
L 〉+ 〈aP

R,b
P
R〉+ y2i · 〈aP

L ,b
P
R〉

= y−2i · 〈a
P
R,b

P
L 〉+ 〈aP ,bP 〉+ y2i · 〈aP

L ,b
P
R〉

0 = y−2i ·
(
〈aP

R,b
P
L 〉 − cR

)
+
(
〈aP ,bP 〉 − cP

)
+ y2i ·

(
〈aP

L ,b
P
R〉 − cL

)
(b) Let us define some Laurent polynomials:

f〈〉(Y ) =
(
〈aP

R,b
P
L 〉 − cR

)
+ Y 2 ·

(
〈aP ,bP 〉 − cP

)
+ Y 4 ·

(
〈aP

L ,b
P
R〉 − cL

)
g〈〉(Y ) = Y −2 · f〈〉(Y )

= Y −2 ·
(
〈aP

R,b
P
L 〉 − cR

)
+
(
〈aP ,bP 〉 − cP

)
+ Y 2 ·

(
〈aP

L ,b
P
R〉 − cL

)
(c) We know that for any i ∈ [4], g〈〉(yi) = 0. Furthermore, g〈〉(−yi) = g〈〉(yi) = 0, and

f〈〉(yi) = f〈〉(−yi) = 0. This means that on 8 distinct points, {y1,−y1, y2,−y2, y3,−y3, y4,−y4},
f〈〉(Y ) = 0. Since f〈〉(Y ) has degree 4, the only way that f〈〉(Y ) has 8 roots is if
f〈〉(Y ) = 0.

(d) Since f〈〉(Y ) = 0, the following equations are true:

cR = 〈aP
R,b

P
L 〉

cP = 〈aP ,bP 〉
cL = 〈aP

L ,b
P
R〉
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5. Let us set (a1,b1) = (aP ,bP ), then we can rewrite equation 1.6 as follows:

P · ux1·c = gaP · hbP · ux1·cP

P · ux1·c = ga1 · hb1 · ux1·〈a1,b1〉

Lemma 1.8 There is a PPT algorithm that takes (tr5, . . . , tr8) and either computes a solution
to the discrete log relation game or computes values (a2,b2) ∈ Zn

p × Zn
p such that

P · ux2·c = ga2 · hb2 · ux2·〈a2,b2〉

The proof of lemma 1.8 is similar to the proof of lemma 1.5.

Lemma 1.9 Given values a1,b1,a2,b2 ∈ Zn
p such that

P · ux1·c = ga1 · hb1 · ux1·〈a1,b1〉 (1.9)

P · ux2·c = ga2 · hb2 · ux2·〈a2,b2〉 (1.10)

and x1 6= x2, there is a PPT algorithm that computes a pair a,b ∈ Zn
p such that

c = 〈a,b〉
P = ga · hb

(1.11)

Proof. We will show that a1 = a2, b1 = b2, and 〈a1,b1〉 = c, or else we can compute a
solution to the discrete log relation problem. Then we set (a,b) = (a1,b1), so (a,b) satisfies
1.11.

1. Let us take a linear combination of equations 1.9 and 1.10 with coefficients 1 and −1:

P 1−1 · u(x1−x2)·c = ga1−a2 · hb1−b2 · ux1·〈a1,b1〉−x2·〈a2,b2〉

1 = ga1−a2 · hb1−b2 · ux1·〈a1,b1〉−x2·〈a2,b2〉−(x1−x2)·c

2. Then we can compute a solution to the discrete log relation problem unless the following
conditions are satisfied:

a1 = a2

b1 = b2

0 = x1 · 〈a1,b1〉 − x2 · 〈a2,b2〉 − (x1 − x2) · c

The final condition simplifies to the following:

0 = (x1 − x2) · 〈a1,b1〉 − (x1 − x2) · c
c = 〈a1,b1〉

3. Let us assume that the discrete log relation problem is hard, so the conditions above
are satisfied. Then we can set (a,b) = (a1,b1). Then c = 〈a,b〉, and:

P · ux1·c = ga1 · hb1 · ux1·〈a1,b1〉

= ga · hb · ux1·c

P = ga · hb

9
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